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Executive Summary 

A. Purpose and Overview 
The Department of Defense (DoD) Test and Evaluation (T&E) community is 

increasing its employment of Design of Experiments (DOE), a rigorous methodology for 
planning and evaluating test designs.  An essential capability that DOE provides is the 
ability to quantitatively and qualitatively assess the adequacy of a test design.  Assessing 
the adequacy of the test design involves evaluating: 

• the goals of the test 

• the response variables (or measures) 

• the range of possible test conditions (factors and levels) 

• the amount of testing, in terms of the number of test points and where they are 
placed across the test region.  

The last consideration is addressed quantitatively by the calculation of statistical 
power.  Since power is one of the primary quantitative metrics used to determine test 
adequacy, it is important that we understand what it is and generally how it is computed. 

This guide provides both a general explanation of the power analysis and specific 
guidance to successfully interface with two software packages, JMP and Design Expert 
(DX).  A detailed discussion of how to interact with the software is necessary because the 
software packages make different assumptions that can result in different, or even 
misleading estimates of statistical power. The guide provides recommendations for inputs 
for statistical power calculations between the different software packages for both 
continuous and binary response variables. 

In a designed experiment, statistical power is the probability that we conclude that a 
factor matters (or, more generally, that a model term matters), given that it truly does 
matter.  Power analysis for a designed experiment involves setting or estimating several 
parameters including: 

• the number of factors (and number of levels for each factor) 

• the proposed statistical model 

• the number of test points dedicated to estimating error 

• the acceptable levels of statistical error 

• the desired detectable change in the response (δ) 
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• the magnitude of the system noise variability (σ), and 

• the statistical model anticipated. 

While all of the above affect statistical power, the two most important assumptions 
are the estimates of δ and σ.  The ratio of these two quantities is often referred to as the 
signal-to-noise ratio (SNR).   

B. Software Package Approaches to Power Analysis 
This guide focuses on Design Expert and JMP products because of the robustness of 

their experimental design packages.  Many other good software programs exist to 
construct experimental designs, but both DX and JMP provide all of the analysis 
capabilities that the Director, Operational Test and Evaluation (DOT&E) has requested in 
evaluating test designs.  DOT&E provides the guidance for all DoD operational testing.  
For a detailed description of how DOT&E reviews test designs please see the July 23, 
2013 DOT&E memorandum, “Best Practices for Assessing the Statistical Adequacy of 
Experimental Designs Used in Operational Test and Evaluation.” 

Unfortunately, the various software packages and their versions use different 
terminology and default methodologies in the calculation of statistical power.  These 
defaults can lead to different power calculations between organizations that might be 
using different versions of software, and sometimes to misleading results.  The primary 
difference between packages lies in the definition of detectable difference in the SNR. 

C. Guidebook Overview  
This guidebook provides an overview of power calculations and detailed 

instructions for calculating power across a variety of software packages.  The first chapter 
introduces statistical power for designed experiments, highlighting key points and 
essential assumptions that can lead to different power estimates.  Additionally, the 
chapter provides an overarching framework for calculating statistical power.  The first 
chapter concludes by introducing the software packages and the notation used by each 
package. 

Chapter 2 of the guidebook outlines power calculations for two-level factors.  The 
power calculations discussed in this section apply to continuous factors, two-level 
categorical factors, and interaction effects for both continuous and two-level categorical 
factors.  Estimating power is straightforward for two-level factors across all software 
packages. 

Chapter 3 focuses on estimating power for multiple-level categorical factors.  Here 
significant differences in power exist depending on the assumptions.  The section 
strongly recommends that users do not accept JMP 11 default coefficients without first 
understanding the implications. 
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The final chapter provides default values for conducting power calculations in each 
of the software packages that can be used when program-specific information is not 
available. 

The appendices of the guidebook outline approaches for calculating power for 
binary response variables and provide mathematical details behind the power 
calculations.   

D. Conclusions and Recommendations 
Testers should always try to base the SNR on the specifics of the test that is being 

planned.  The detectable difference (or signal) should be based on what differences are 
operationally significant using input from operators and other subject matter experts.  The 
noise estimate should be based on past test data collected in similar conditions whenever 
possible.  Pilot tests provide excellent estimates of the noise in many cases.  

However, when reasonable estimates of the SNR ratio are not available, we can 
provide some guiding principles based on past operational test experience.  The final 
chapter of this user guide recommends using a SNR (𝛿𝛿 𝜎𝜎⁄ ) between 1.5 and 2.0 and a 95 
percent confidence level.  Larger values (up to 2.0) should be used only in highly 
controlled test environments.  Smaller values (less than 1.0) drive extremely large tests 
and have not resulted in operationally significant results in previous tests.  These SNR 
values only apply to continuous response variables.  Recommendations for specifying the 
SNR for binary responses are provided in Appendix B.   

Additionally, we can control for differences in the software packages by using the 
scaled values for the SNR.  Table 1, below, provides recommended default values.  

iii 



Table 1. Recommended Inputs for Signal-to-Noise Ratio in Software Packages 

Software 2 Level Factors/ 
Continuous Factors/ 

Interactions for 2 Level 
Factors 

Multiple Level 
Categorical Factors 

and their Interactions 

Quadratic Terms 

Design Expert 
8, 9 𝛿𝛿 𝜎𝜎� * 𝛿𝛿 𝜎𝜎�  𝛿𝛿

2𝜎𝜎�  

JMP 9 𝛿𝛿
2𝜎𝜎�  𝛿𝛿

2𝜎𝜎� ** 𝛿𝛿
2𝜎𝜎�  

JMP 10 
𝛿𝛿 𝜎𝜎�  𝛿𝛿 𝜎𝜎�  𝛿𝛿 𝜎𝜎�  

JMP 11 

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  
Adjust all but two 

coefficients to zero 
(conservative method 

described in Chapter 4) 

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  

*If using the generic signal-to-noise ratios suggested in the previous section this value would be between 1.5 
and 2.0. 

**Dividing the signal-to-noise ratio by 2 only provides an exact power calculation to match the other 
packages for two-level factors.  JMP 9 only provides power calculations for coefficients and is not 
comparable to the other packages.  However, using this value typically provides reasonable test sizes, 
despite the limitations in the power calculations. 
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1. Introduction – Power Analysis Concepts 

A. Motivation 
The Department of Defense (DoD) Test and Evaluation (T&E) community is 

increasing employing Design of Experiments (DOE) as a methodology for planning and 
evaluating test designs.  As the adoption of DOE (or experimental design) increases, it is 
essential that we consider both quantitative and qualitative aspects of test adequacy.  
Three major aspects of test planning collectively answer the adequacy question.  The first 
and most important aspect is whether we are attempting to solve the right problem.  Do 
we have our objectives stated correctly and completely?  The second aspect, which only 
careful, team-based planning can provide is whether all the relevant performance 
measures are listed, and whether the associated test design(s) span the range of possible 
test conditions (factors and levels).  The third aspect, and the reason for this guide, is 
whether we are planning to test too little, just the right amount, or too much relative to 
the insight we need for the stated objectives.  This third consideration is addressed by the 
calculation and assessment of statistical power. 

Power is one of the primary metrics used to determine test adequacy, so it is 
important that: (1) we understand what it is and generally how it is computed, and (2) 
how to interact with selected software to obtain accurate power values for a given design 
strategy.  This guide provides both a general explanation of the power analysis strategy 
and specific guidance to successfully interface with two software packages, JMP and 
Design Expert.  The guide addresses three versions of JMP and two versions of Design 
Expert, and provides recommendations for inputs for statistical power calculations across 
these different software packages for both continuous and binary response variables. 

1. Motivating Example 
Figure 1-1 shows the power for multiple designed experiments each with two 

factors, but with varying numbers of levels from two to six.  The power is provided for 
different versions of JMP software and Design Expert.  Notice for two-level factors the 
power is consistent across all packages, but for categorical factors with multiple levels 
the power changes, often dramatically, between software packages.  This power guide 
will explain those changes and provide recommendations.   
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Figure 1-1 Power analysis comparison across software platforms using a signal-to-noise 

ratio of 2 and all methods discussed in this guide. 

B. Guide Overview and Intended Use 
This guide provides both a general explanation of the power analysis procedure and 

specific guidance to successfully interface with two software packages, JMP and Design 
Expert (DX).  A detailed discussion of how to interact with the software is necessary 
because the software packages make different assumptions that can result in different 
and/or misleading estimates of statistical power. The guide provides recommendations 
for inputs for statistical power calculations across the difference software packages for 
both continuous and binary response variables. 

This guide is intended for analysts who need to use statistical software packages to 
calculate power.  While the appendices provide the detailed mathematics behind the 
power calculations, the main body of the guide is intended to walk users through the 
software packages without sidetracking to cover the mathematical details.  A user should 
be able to use the guide to calculate and interpret power from any of the packages 
discussed. 
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The remainder of this chapter provides an overview of statistical power for designed 
experiments, highlighting key points, and essential assumptions that can lead to different 
power estimates.  We discuss the selection of response variables in the context of 
statistical power.  That discussion is followed by descriptions of all the relevant 
parameters involved in power analysis, along with an overarching framework for 
calculating statistical power.  This framework is intended to guide the user through the 
key choices they must make when calculating statistical power.  Finally, we introduce the 
software packages and the notation used by each package. 

Chapter 2 of the guidebook details power calculations and considerations for 
designs with two-level factors.  The power calculations discussed in this section apply to 
continuous factors for main effects (first order model), two-level categorical factors, and 
interaction effects for both continuous and two-level categorical factors.  Estimating 
power is straightforward for two-level designs with both factor types and is consistent 
across all software versions.  The guidebook walks through the process in both JMP and 
DX software packages. 

Chapter 3 focuses on estimating power for categorical factors with more than two 
levels.  Here the software packages make different assumptions of the questions of 
interest, which is important for the user to understand.  The differences are discussed and 
summarized.  

The final chapter of the guidebook highlights important recommendations, expands 
the recommendations of the guidebook to additional statistical models not covered by the 
guide, and provides recommendations for specific inputs to each of the packages. 

C. Power for a Designed Experiment  

1. Overview 
One of the primary practices in ensuring test design adequacy is to sufficiently 

mitigate risk associated with the probabilities of drawing incorrect conclusions post-test.  
The method known as statistical power analysis is used mostly to determine the number 
of runs (also called design points or test events) needed in order to control the two types 
of error probabilities (α and β) in testing.  The two types of errors manifest themselves in 
a number of ways in statistics.  In DOE they are associated with probabilities of either 
incorrectly concluding that a factor matters in affecting system performance when it truly 
does not (α), or concluding that a factor is not influential when it really does affect 
system performance (β).  Power and the corresponding errors for a designed experiment 
are defined below: 
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Consider the simple example of an air-to-air missile operating both in low and high 

clutter environments.  The primary response variable for this simple example is the miss 
distance (MD) and it is a function of just a single factor, the level of clutter in the 
environment.  In this simple experiment, the null hypothesis (H0) is that clutter has no 
effect on the missile miss distance.  The alternative hypothesis (H1) is that clutter does 
have an effect on the missile miss distance.  Figure 1-2 illustrates the α and β 
probabilities under the null and alternative hypotheses.  The standard process for 
calculating power is to set an acceptable α error (step a – b), then to compute the β error 
(step c – d).  Statistical power is defined as the complement (1- β) of the β error.  In this 
example, power is the probability that we conclude clutter does impact the missile miss 
distance, when it truly does have an effect.  Note that the α and β errors are depicted as 
areas (probabilities) under a probability distribution.  In this example the reference 
distribution shapes drawn are notional.  It is often the case that miss distance response 
variables are not symmetric.  While non-symmetric distributions are not discussed in this 
guide, it is typically reasonable to treat non-symmetric distributions the same as 
symmetric distributions for power calculations because the shape of the distribution has 
less of an effect on power than many of the other assumptions.   

 
Figure 1-2.  Air-to-Air Missile Example: sequence for determining statistical power  

α = Probability (the test conclusion is that a factor matters, given the factor has no effect) 
β = Probability (the test conclusion is that a factor has no effect, given the factor matters) 

Power = 1-β = Probability (the test conclusion is that a factor matters, given the factor matters) 
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Once α is set, the objective is to size the test such that a high statistical power is 
achieved.  The relationship between power and sample size is one of marginally 
decreasing returns.  Power grows rapidly initially but as the number of trials continues to 
increase, power improvement slows.  Assuming a stable system under test and little 
chance of missing data, extra trials to obtain power values above 95 percent are usually 
not necessary. 

2. Essential Elements of Power Calculations 
Most tests are more complex than the notional one-factor air-to-air missile 

experiment described above. Power analysis for a designed experiment involves setting 
or estimating parameters for: 

• the number of factors (and number of levels for each factor) 

• the number of test points dedicated to estimating experimental error (due to 
system noise) 

• an acceptable α risk 

• the desired detectable change in the response (δ) 

• and the magnitude of the system noise variability σ. 

Figure 1-3 outlines all of the elements necessary for calculating power from a 
designed experiment. The numbers of factors and levels tend to arise from the planning 
process, although those parameters can also influence the final power or test size value.  
The most useful endeavors in power analysis investigations are in obtaining 
accurate estimates for the detectable difference (δ) and the system noise (σ).  The 
ratio δ/σ is also called the signal-to-noise ratio (SNR).  Subject matter experts for the 
system under consideration are the best sources of information in determining the 
detectable difference, while pilot studies or historical data of similar systems under like 
conditions usually lead to sufficient noise estimates.  In cases where the response is 
suspected to be non-symmetric and historical data are available, the estimates of δ and σ 
can take into account the shape of the distribution. 

The test planning process and subject matter expert are essential in producing 
defensible power estimates.  Test team input into power calculations include: the 
responses and number of factors which often come from the test team’s process 
decomposition, estimates of σ from historical or pilot data, α is based on acceptable risk, 
and δ is uncovered in discussion with system or technical experts. 
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Figure 1-3.  Parameters included in a power analysis, along with a description of each and 

ways to provide estimates.  The gear diagram shows the sequence for setting or 
estimating each parameter. 

3. Statistical Model 
In addition to the items outlined in Figure 1-3 it is important to consider the 

resulting statistical analysis that will be conducted as a result of the test. A simple math 
characterization of a system is: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀 

where y is the response, the x’s are factors, so 𝜀𝜀 represents differences between the math 
model and the observed outcome (due to noise).  The parameter σ is the standard 
deviation of that noise.  It is important to note is that σ is estimated with the effect of 
factors removed.  Hence the data used to estimate σ should be data obtained from similar 
operating and environmental conditions (factor settings).  Using data collected under 
dissimilar conditions will excessively inflate the noise estimate such that the estimate 
would represent variability in excess of noise variability.  

Prior to constructing a design, the test team must consider alternative anticipated 
statistical models and determine which polynomial form (e.g., first order plus interaction) 
best aligns with the test objectives (e.g., screen, vs. characterize vs. optimize), and which 
types of model terms might be significant for that system under study.  One common 
polynomial form is the main effects (or first order) model which is given by: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + � �𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗�
𝑘𝑘

𝑗𝑗=1
+ 𝜀𝜀𝑖𝑖 
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where k is the number of factors, the 𝑥𝑥𝑗𝑗 are specific settings for each factor j, 𝛽𝛽0 is the 
overall intercept, and 𝛽𝛽𝑗𝑗 are coefficients reflecting the change in the response per unit 
change in 𝑥𝑥 for each factor.  This first order model allows for shifts in the overall mean as 
a function of the factors.  For continuous factors the shift in the mean is a linear function. 
For categorical factors shifts in the mean apply to each level of the categorical factors.  
Therefore, for categorical factors with more than two levels, more than one value of 𝑥𝑥 is 
needed to account for the appropriate mean shifts. 

A first order plus interaction model is by far the more prevalent model form used as 
the general model, because it captures the preponderance of significant effects occurring 
in real world systems, assuming the objectives are screening or characterization.  This 
model provides more flexibility in the analysis of the test outcomes.  A first order plus 
interaction model is: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + � �𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗�
𝑘𝑘

𝑗𝑗=1
+ � � �𝛽𝛽𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑥𝑥𝑙𝑙�

𝑘𝑘

𝑙𝑙=𝑗𝑗+1
+

𝑘𝑘

𝑗𝑗=1
𝜀𝜀𝑖𝑖 

This model adds commonly occurring two-way interaction terms for all factors, to the 
first order model.  Higher order models can be generated by adding quadratic polynomial 
terms, which is a popular model form for optimization objectives. 

Connected with the statistical model an important assumption for multi-level 
categorical factors is the relationship of the coefficients to the overall factor effect.  This 
assumption is at the root of all differences in the software packages.  Therefore, by 
understanding the differences, we can understand the power calculations that software 
provides. 

4. Factor Effect Power versus Coefficient Power 
We previously defined δ as the desired detectable change in the response or 

detectable difference.  Essentially the focus is on the factor effect.  Another approach to 
power analysis instead considers assessing the change in the model regression 
coefficients.  However, when we perform hypothesis testing on the coefficient of the 
factor, we are formally testing if the model coefficient β is significantly different from 
zero.  Therefore, a translation must be made between the difference that we seek to detect 
in the response and the difference we seek to detect in the coefficient.  For a two-level 
factor, this translation is straightforward, in that the coefficient detectable difference is 
half of the response detectable difference.  

For multiple-level categorical factors this calculation is not straightforward because 
we must define exactly which of the levels we expect to produce the change in the 
response through a customized contrast.  The situation is further complicated in that there 
are many ways to code the contrasts for a given factor and design, affecting the final 
power outcomes.  These contrasts are discussed in more detail in Chapter 3. 
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However, for now it is important to note that there are different types of power 
calculations. Factor effect power is based on the hypothesis that we are looking for any 
difference in outcomes for any level of the factor.  So if at least one level of the factor has 
a significant effect the factor effect hypothesis test will capture this.  On the other hand, 
coefficient power tests the statistical significance of each coefficient.  For two-level 
factors there is only a single coefficient per factor, so effect and coefficient power 
calculations are equivalent.  For multiple-level categorical factors the two are clearly 
different because multiple coefficients make up the overall factor significance.  

5. Error Degrees of Freedom 
To conduct statistical significance testing in building a statistical model, it is 

essential to plan a test to collect sufficient data to estimate the error term, which can be 
assessed by the error degrees-of-freedom.  Degrees-of-freedom is a concept formally tied 
to the rank (number of independent rows or columns) of the model matrix in quadratic 
form.  Practically, the concept of degrees-of-freedom refers to the number of independent 
elements (one per experimental run) available to estimate model parameters or error.  The 
total degrees-of-freedom value for an experiment is usually equal to the number of runs 
minus one, to account for the grand mean or model intercept.  This total is then 
partitioned into degrees-of-freedom required to estimate the model terms, plus those 
degrees-of-freedom needed for error.  An insufficient number of degrees-of-freedom 
dedicated to estimating error can drastically alter power downward.  Figure 1-4 shows 
power for a 5-factor 25-1 half fraction factorial design, and assumes the general model 
contains the full first order plus interaction set of terms, for a total of 16 model degrees-
of-freedom.  The plot shows that power can change from 0 percent (saturated model with 
0 error degrees-of-freedom) to over 90 percent in as few as five additional runs due to 
sensitivities in the number of available error degrees-of-freedom. 
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Figure 1-4.  Power as a function of error degrees-of-freedom.  Power plotted for a 25-1 
fractional factorial design with SNR=2 and an assumed two-factor interaction model. 

6. Power Analysis Process 
The standard power analysis process involves manipulating the sample size (number 

of test points) until an acceptably high statistical power is achieved.  It is during this 
process that the analyst utilizes statistical software to iterate on the design test size until 
the desired power is obtained.  Recall, that power is reported per factor and per response, 
so even for a single designed experiment, a number of power values should be tuned and 
reported.  It is also important to note that numerous parameters must be estimated in 
order to compute power, so a low precision estimate (integer percent values) is probably 
more than adequate.  It cannot be overstated, the key to right-sizing a test is the hard 
work put in by the test team to obtain appropriate and accurate estimates of δ (from 
discussions with system experts) and σ (from actual data). 

D. Response Types - Continuous versus Binary Responses 
Before we detail the steps for conducting a power analysis with various statistical 

software packages, it is very important to recognize the nature of response variables, and 
the impact response variable types have on the richness of the information acquired, and 
hence on statistical power.  If the test is planned using a binary response (pass/fail, 
detect/no-detect, hit/miss, lock/break-lock, yes/no, etc.) as the primary or only measure of 
performance, then the estimated power value will be markedly lower than the same 
design using a continuous response variable.  Figure 1-5 shows power curves for a design 

Power for a 25-1 fractional factorial design 
Based on a first order plus interaction model. 
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with four two-level factors, comparing continuous versus binary response variables.  A 
large increase in sample size is required for the binary response to achieve the same 
power.  Appendix B discusses useful approximations of the SNR for binary responses, 
which allows for using either DX or JMP directly. 

 
Figure 1-5.  Sample size for binary versus continuous responses for a 24 full factorial 

design to achieve 80 percent statistical power 

As a general rule more information is obtained from the outcome of a test when the 
measures of effectiveness or suitability are continuous random variable (assuming 
measurement error is minimal and the measure appropriately reflects system performance 
associated with test objectives).  The best type of response for data analysis, empirical 
modeling and ultimately improved knowledge of system behavior is one that varies 
continuously over a wide range of values, and that is largely affected by system factor 
changes, and less by noise.  Continuous responses not only allow for statistical model 
predictions across the range of performance, but require substantially fewer test runs than 
a design based on a binary response.  Take for example the Joint Precision Airdrop 
System (JPADS), with steerable parachutes and an onboard computer to direct loads to a 
designated point of impact in a drop zone.  Suppose the requirement for JPADS is that 
the loads land within, say 200 yards of the designated point of impact.  Two response 
options are a binary pass/fail (inside/outside the 200-yard ring) and miss distance (in 
yards) from the target point.  The miss distance response is vastly superior in information 
content per test condition and should be the primary response, but there is no reason not 
to collect, model and report both measures. 

It is often beneficial and useful to collect binary response random variables 
alongside their continuous counterparts, for the same objective.  However, whenever 
possible the test size and power analysis should be based on the continuous response 
variable. Two of the more compelling reasons for collecting binary responses are: (1) for 

1-10 



each test condition, they directly answer some specification or system requirement, and 
(2) they are easily interpreted and reported.  A third reason for assessing binary responses 
is that they can provide additional insight relative to the story told by the continuous 
measure, especially if regarding a target end state.  Miss distance is a popular continuous 
response, but it does not always perfectly correlate with its binary counterpart (e.g., target 
destruction).  So adding binary responses of battle damage assessment kill/no-kill is 
informative.  Level of destruction is a good example of an intermediate type of response 
(ordinal) that provides less information than a continuous response, but more than a 
binary one.  It is important to recognize though that as the response variable types 
progress from continuous towards binary, less information is retrieved per test run, and so 
by comparison more and more data are needed to accurately answer the same questions. 

E. Power Analysis Process Flow 
There are several actions to take and decisions to make during the course of a power 

analysis, which also involves the need to iterate on the design in order to achieve the 
desired power values.  All of the steps and considerations along the way are addressed in 
this guide.  Figure 1-6 provides a process flow diagram that may be helpful to visualize 
the entire process.  Some of the steps have been described already, but others are covered 
in more detail in the sections to follow. 
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Figure 1-6.  Power analysis process flow diagram 
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This iterative process is integral to building an effective and efficient design.  
Needed up front are specifics about the design to include response types, factors, levels, 
and the design objective (e.g., screen, characterize).  From a power analysis perspective, 
the user must also supply α, δ, and σ.  If a binary response is primary, there is an 
additional step to take prior to building the design, to determine the binary SNR value.  
Based on the design objective, the user proceeds to build the design and interacts with the 
power values to increase or decrease the design size until desired power values are 
obtained.  

F. Software Packages for Computing Statistical Power 
Several very capable DOE software packages are available.  The quantity and 

diversity of statistical power analysis programs within these packages has increased.  
This guide provides recommendations to IDA and DoD analysts on general power 
analysis guidelines, cautions on pitfalls to avoid, and suggestions for working with 
specific software versions.  This guide focuses on Design Expert and JMP products due 
to the robustness of their experimental design and analysis capabilities.  Several other 
high quality DOE software programs exist to construct and analyze experimental designs.  
However, both Design Expert and JMP provide all of the analysis capabilities that 
DOT&E has requested in evaluating test designs.  For a detailed description of how 
DOT&E reviews test designs please see the July 23, 2013 DOT&E memorandum, “Best 
Practices for Assessing the Statistical Adequacy of Experimental Designs Used in 
Operational Test and Evaluation.” 

Probably the most inconsistent aspect of software enabled power analysis across 
software platforms is the notation and terminology used to describe the desired detectable 
response change and the system noise.  Table 1-1 shows the various terms used to capture 
essentially the same information.  

JMP Statistical Software (JMP v.11, 2014) has undergone the most dramatic 
changes in its design of experiments power analysis platform, particularly in JMP version 
11.  The primary purpose of the new interface is to provide the user flexibility to shape 
the nature of the design based on user prior knowledge or information, particularly for 
categorical factors with more than two levels.  Computing power for factors with more 
than two categorical levels is not trivial and requires assumptions regarding the expected 
differences among factor levels.  This guide provides some general power analysis 
insights along with example-based guidelines for successfully accomplishing power 
assessments using JMP and Design Expert. 

1-13 



Table 1-1.  Terminology in Software to Request or Report Delta (δ) and Sigma (σ) Estimates 
for Power Analysis 

Software Delta Sigma Delta/Sigma 
Design Expert 8, 
9 

Delta, Difference to detect in 
the response, “Signal”, refers 
to the change in 
the response. 

Sigma, Est. Std. 
Dev., “Noise” 

Delta/Sigma, 
Signal/Noise Ratio* 

JMP 9 Implied, as Signal but 
cannot enter directly, refers 
to a change in the coefficient 
as opposed to the response 

Implied, as Noise 
but can’t enter 
directly 

Signal to Noise Ratio 
(for coefficient) 

JMP 10 Implied, as Signal but 
cannot enter directly, refers 
to a change in the response. 

Implied, as Noise 
but cannot enter 
directly 

Signal to Noise Ratio 
(for response) 

JMP 11 Indirectly either using 
Anticipated Responses or 
Anticipated Coefficients, or 
directly using delta under 
Advanced Options) 

Anticipated Root 
mean square error 
(RMSE) 

If using Advanced 
Options, and Power 
Analysis interface, 
then delta/RMSE, 
assuming RMSE = 1; 
delta refers to a 
change in the 
coefficient 

* Note: In Design Evaluation, several default delta/sigma ratios (0.5, 1.0, 2.0) are shown as e.g., 2 Std. Dev. 

G. Summary of General Power Concepts 
• Two test risks should be considered in test planning, α and β. Both are 

probabilities associated with incorrect conclusions based on a pair of 
complementary hypotheses conjectured prior to test. 

• Of the two risks, the α risk is set prior to designing the test.  The β risk is 
usually computed then iterated on by changing the test size until β is 
sufficiently small. 

• Power is a probability (1- β) and is the complement of the β risk associated 
with test. 

• Because of the way we address the two risks, power becomes the final risk 
typically managed in design construction. 

• Power depends on the total test or sample size, the α risk, and also the size of 
the change in response the test team seeks to discover, the noise standard 
deviation, the number of test factors, and the anticipated model. 

• There are many different assumptions in the anticipated model that can affect 
the power calculations.  Different software packages use different assumptions 
so it is important for the user to understand these assumptions. 
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• Higher power values are desired, and while designs can be under-powered, 
right-sized or over-powered, but because of resource restrictions we are 
usually striving to right-size a test that would otherwise be under-powered. 

• Continuous responses are vastly more informative than categorical responses, 
especially binary categorical responses, so work hard to identify continuous 
responses as primary measures of interest. 

• Power is only one of many design metrics, but one of the more important 
indicators of test design adequacy. 
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2. Power for Two-Level Designs 

This section provides a user’s guide for calculating power for two-level design.  
These designs provide a good introduction to power calculations for each of the software 
packages because differences between the packages are relatively minor and easily 
explained due to the simplicity of the designs.  The next chapter discusses power 
calculations for multiple level categorical factors, which are significantly more complex 
in terms of their power calculations. 

A. Two-level Design Generation and Design Choices 
The most common two-level designs are 2k full factorial and 2k-p fractional factorial 

regular designs.  Non-regular two-level optimal designs are also addressed by this 
section.  Typically in a two-level design the goal of the test is screen for important factors 
affecting the test outcomes.  Two-level designs are the most efficient and powerful 
method for screening for important factors, whether they are numeric (continuous or 
discrete) or categorical. 

Two-level designs support first order models (main effects) and interaction effect.  
The degree of the interaction effect supported by the design depends on the design type.  
Full factorial designs support all possible interactions.  Regular 2k-p fractional factorial 
designs are often categorized by the resolution of the design: 

• Resolution III designs support modeling of main effect.  However, some 
main effects may be indistinguishable from some two-factor interactions. 

• Resolution IV designs support modeling main effect and some two-way 
interactions.  However, while all main effects can be estimated independently, 
some two-factor interactions will be indistinguishable from other two-factor 
interactions. 

• Resolution V designs support modeling main effects and two factor 
interactions.  All main effects and two-factor interactions can be estimated 
independently from each other. Some two-factor interactions may be 
indistinguishable from some three-factor interactions.  

Resolution II designs are not viable alternatives because main effects are perfectly aliased 
(confounded) with other main effects.  Designs with resolution > V are also available.  
Typically a Resolution V design is considered a safe and robust test design strategy. 
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Optimal fraction designs are another class of two-level designs that allow for the 
specification of a completely customized model.  Depending on the sample size selected 
and the exact model selected optimal fraction designs may result in partially correlated 
model coefficients.  This is in contrast to regular fractional factorial designs which have 
either zero correlation between model terms or complete confounding (100 percent 
correlation) between model terms. Optimal fraction designs can be useful for generating 
test designs for sample sizes that are not equal to a power of 2 (i.e., 8, 16, 32, 64, etc.).  

There is a trade-off in design capabilities between selecting anticipated model terms 
(main effects and interactions) to be perfectly correlated (aliased) as they are in a regular 
2k-p fractional factorial and partially correlated (correlations >0 and <1) as they are in an 
optimal fraction design.  Partially correlated terms allow for the possibility that the 
estimated effects in question are sufficiently uncorrelated such that reasonable estimates 
can be obtained.  If you choose designs where main effects are partially correlated with 
interactions or two-factor interactions are partially correlated with each other, it is highly 
recommended that when analyzing the data, use a model building variable selection 
technique such as stepwise regression to find the likely important effects.  Adding runs to 
partially aliased designs is recommended although it can be difficult to determine the 
exact runs which offer the most value in uncovering the correct model.   

By contrast, designs with perfectly correlated model effects (regular fractional 
factorials) do not have the model estimation issues and possible variable identification 
issues due to partial correlation, but they have their own challenges.  Sequential testing is 
key to success in these designs, as it should be with partially aliased designs.  To uncover 
the correct model in these designs, the first step is to analyze the data from the initial 
design and identify the important effect sets (alias chains) via typical hypothesis tests and 
least squares fitting.  The next step is to attempt to determine the most logical 
contributors to each significant effect set using the principles of effect sparsity and model 
heredity.  For example, a main effect aliased with two or more four-factor interactions 
yields a simple solution that with near certainty the main effect is driving the large effect 
observed.  Two-factor interactions aliased with other two-factor interactions can often be 
resolved via model heredity, which is a long-standing empirical finding that significant 
interactions carry along one, or more likely both of their main effects as significant too.  
The important third step is to identify the unresolved effect sets to decouple via a small 
set of additional tests, and execute those runs and analyze the combined two sets of data. 

B. Two-Level Design Generation and Power in Design Expert 

1. Design Expert Test Design Generation 
The process for generating two-level designs in Design Expert is relatively straight-

forward for regular (N=2r, where r=2, 3, 4, …) designs, while non-regular or optimal 
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options are also available.  Two-level full factorial and regular fractional factorial designs 
are available under the Two-Level Factorial Design section.  Figure 3-1 below shows a 
screen shot for generating regular two-level designs.  Notice in the figure that Design 
Expert provides the resolution of the design with color coding, identifying resolution V 
designs and higher as optimal.  

 
Figure 2-1. Design Expert Regular Two-Level Design Interface 

Options are available to replicate the design to improve power and add center 
points.  Center points are useful for continuous variables for checking for deviations from 
the linearity assumption implicit in the two-level designs.   

The Optional Design option under the factorial tab in Design Expert provides the 
ability to generate non-regular fractional factorial designs. 

2. Design Expert Power Calculations 
Design Expert provides power calculations in two locations.  The first is provided 

before the test design is finalized.  The Design Expert power wizard provides a tool 
where the user can directly input estimates for δ and σ.  Design Expert defaults to using a 
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main effects model for estimating power, which on the surface appears inconsistent with 
our standard recommendation to build designs to fit the main effects plus interaction 
model.  The rationale supporting only main effects for power analysis is, due to effect 
sparsity, not all the main effects and interactions are typically significant.  Only a subset 
of the main effects plus interactions will be significant, and the total number of main 
effects is a reasonable value for the purposes of power analysis.  The final statistical 
model is expected to contain some combination of main effects and interactions, but all 
that is needed for power analysis is an adequate estimate of the number of model degrees 
of freedom.  If more than k model terms are anticipated in the final model, this default 
can be changed by selecting the “Edit model for power…” button.  Again, the most 
important consideration here is to select an appropriate number of anticipated effects, and 
it doesn’t matter which effects are checked, and in fact we really don’t know prior to test.  
For 2-level designs selecting main effects or interactions is immaterial as all model terms, 
whether main effects or interactions, require only 1 degree of freedom for the model.  

The second location that Design Expert provides power is after the design is 
finalized in the Design→Evaluation→Results output.  Here power is provided for three 
signal-to-noise ratios (SNRs).  The defaults are 0.5σ, 1.0σ, and 2.0σ, denoted.  The 
default SNR can be changed under Design→Evaluation→Results→Options.  The default 
α level for Design Expert is 0.05, which is recommended unless extenuating 
circumstances justify an alternative value.  The default value of 0.05 can be changed 
under Edit→Preferences→Math. 

C. Two-Level Design Generation and Power in JMP 

1. JMP Test Design Generation 
In JMP, two-level designs can be generated using Custom Design, Screening 

Design, or Full-Factorial Design.  The Custom Design procedure provides the largest 
flexibility in constructing designs and the ability to evaluate the design inside the design 
generation application.  To generate a two-level design in the Custom Design tool: 

1. Input the factors, factor types, and levels 
2. Choose the appropriate model, usually main effects plus 2-factor interactions 

(select Interactions, 2nd).   
3. Choose the desired number of runs.  If practical, choose a regular design with 

N=2k runs, where k is integer.  Remember that the single replicate full or 
fractional design is only the base design, and additional runs are needed for 
replicates, center points, augmentation to decouple interactions, augmentation 
for second order terms, or to increase power, and finally additional runs for 
validation. 

4. If not choosing a regular two-level design, be sure to select as many model 
terms as possible (make them Necessary) based on available model degrees of 
freedom, then include the remaining desired model terms (If Possible). 
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5. In assessing the constructed design be sure to perform not only a power 
analysis, but check for perfect aliasing (factor effects perfectly correlated), 
estimation efficiency, and color map correlations. 

Please note that, although it is possible to build classical 2k-p designs in JMP 
DOE→Custom Design, we suggest you select DOE→Screening Design. 

The following tips apply to users of JMP regarding initially specifying the desired 
anticipated model vs. trimming the model to a realistic size for assessing power.   

• When building designs, note the default model when constructing a custom 
design is main effects only.  Be sure to specify the fully desired anticipated 
model (usually at least including all two-factor interactions) prior to building 
the design. 

• If the desired number of runs is less than the number of model term degrees of 
freedom (less than the Minimum in the JMP interface), go back to the model 
and change the setting on some or all of the included two-factor interaction 
terms to, If Possible (requires left mouse click under Estimability heading). 

• Once the design is built, check the aliasing or correlations using the alias 
matrix and the color map on correlations 

• To perform power analysis after the design is built (after Make Design and 
Make Table), from the data table: 

1. Choose DOE→Evaluate Design.   
2. Place the Response(s) in Y, Response and the factors in X, Factor. 
3. Under Model, select a model with approximately the right number of model 

terms.  A main effects model is often a good choice.   
4. Page down to the Power tab and check the model terms to ensure the changes 

you made are reflected in the power section. Read the power values from 
either the coefficient power or the factor effect power – should be the same for 
2-level designs.   

2. JMP 9 and JMP 10 Power Calculations 
Power analysis is found under the Design Evaluation section in all versions of JMP.  

This section appears in the custom design tool after the design is generated.  In JMP 9, 
power calculations are found under the Relative Variance of Coefficients tab.  As the title 
of the tab suggests the power calculations are for the change in the coefficient instead of 
the change in the response variable.  JMP 9 provides a box to change the significance 
level and enter the SNR above the power calculations.  For two-level designs the SNR is 
based on the anticipated change in the regression coefficient, and not the effect (or 
change in the response).  Accordingly, in JMP 9 be sure to divide your delta/sigma ratio 
by 2 before entering that value as the SNR.  

JMP 10 power calculations follow a similar process to JMP 9, except there is an 
inherent difference in the use and interpretation of SNR.  Both versions refer to the 
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numerator of the SNR as signal, but whereas JMP 9 is expecting the user to supply the 
anticipated change in the regression coefficient, JMP 10 is expecting the signal to refer to 
the change in the response, or the effect (twice the regression coefficient for a two-level 
design).  The rationale for the JMP 10 interpretation of the signal to be the anticipated 
change in the response (as opposed to the regression coefficient), is that the change in the 
response seems to be more natural for the system expert (usually an engineer) to 
determine.  During test planning, the engineer might be asked directly, “what size change 
in the response (use the response units) do you want to detect during testing?”   

Figure 3-2 shows power estimates from JMP 9 and 10 to illustrate the difference 
between interpretations of SNRs. Power is shown for five different factorial designs at 
three different SNRs. The SNRs are user inputs to the JMP interface. As seen in the 
graph, the power for JMP 9 at a SNR of 0.5 is equivalent to the power for JMP 10 at a 
SNR of 1.0. A similar case is evident for SNRs of 1.0 and 2.0.  JMP 9’s interpretation of 
SNR is two times larger than JMP 10’s, which greatly inflates JMP 9’s power estimates 
compared to JMP 10.  The general guidance is to use JMP 10 given the choice, and if 
using JMP 9, then divide your anticipated SNR by 2 before inputting the value into JMP 
9. 

 
Figure 2-2.  Comparison of JMP 9 and JMP 10 Power Calculations 

3. JMP 11 Power Calculations 
The JMP 11 power analysis interface is different from all previous JMP versions.  

The new interface provides multiple options and flexibility in entering the information 
necessary for power analysis.  This increased flexibility makes matching the power 
calculations from any other package possible, but also increases the chances for error.   

For two-level factors, the default JMP 11 and JMP 10 power computations agree.  
This is because the default anticipated coefficients used result in a δ/σ ratio (or SNR) of 
two.  Differences do exist for categorical factors with 3 or more levels, and are discussed 
extensively later in discussions on designs involving categorical factors more than two 
levels.  
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The JMP 11 interface provides three primary methods for entering the information 
for power analysis: 

• Entering the anticipated responses 

• Entering the anticipated coefficients 

• Entering a general SNR (similar to JMP 9 and 10). 

a. Power Using Anticipated Responses 
JMP 11 provides the option to directly enter the anticipated response for each run of 

the test design.  While this option provides useful educational information by illustrating 
the translation between anticipated responses and anticipated coefficients, in practice it is 
nearly impossible to know the anticipated response for each test condition. 

b. Power Using Anticipated Coefficients 
The anticipated coefficients are all defaulted to a value of one, which implies a two-

unit change in the response as the factor changes from the low level (-1 in coded) to the 
high level (+1 coded). If a different SNR is desired, just set the anticipated coefficients to 
SNR/2.  This method is most useful if prior knowledge is available such that the 
anticipated change in the response per factor varies and this is known prior to test.  For 
example, suppose that a four-factor design is being considered and it is anticipated that 
two factors (say A and B) will cause twice the change in response as the other two factors 
(C and D).  One could set the anticipated coefficients for A and B to 1, while setting C 
and D to 0.5.  The resulting power analysis will show lower power values for C and D, 
everything else the same. 

c. Power Using SNR in Advanced Options 
JMP 11 provides the traditional method of entering a delta and sigma, but is not 

immediately obvious.  The developers of JMP 11 were sensitive to a potential need for a 
JMP 11 power analysis input option similar to the JMP 10/9 interfaces (and similar to 
Design Expert).  They added the ability to independently specify the anticipated signal 
(or δ), and the noise (σ) estimate (anticipated RMSE).   There are two options discussed 
below for entering the SNR, but Option 1 is simpler and recommended.   

Option 1: Enter Delta/Sigma for delta – The easiest way to input the necessary 
information is to form your estimated δ/σ ahead of time as a ratio, similar to the form 
JMP 10 requests.  That ratio will then be entered into JMP as a delta, assuming σ = 1.  To 
enter the δ/σ (which is the same as δ for σ=1), go to the red triangle at the top of the 
dialog box to the left of Custom Design.  Left mouse click on the triangle, choose 
Advanced Options, Set Delta for Power.  It asks to enter the delta for power and notes 
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that the anticipated coefficients will be half of this value.  Enter your estimated δ/σ value 
here.  Note that the default sigma, referred to as Anticipated RMSE = 1. 

Example:  Planning has determined the test will have 6 factors, each with two 
levels.  Initially, it is decided to construct a fractional factorial design with 16 runs, which 
allows for estimation of a main effects and some two-factor interactions, aliased in pairs.  
Choose Make Design.  The Custom Design dialog appears with the power analysis 
interface along with other features that permit a detailed assessment of the proposed 
design (Figure 3-3). Assume the test planning has uncovered the following: 

1. System experts determine the difference to detect, delta = 𝛿𝛿 = 25.0 

2. Historical data provides noise estimate, sigma = 𝜎𝜎� = 13.5. 

3. Then, compute δ� 𝜎𝜎�⁄  = 25.0/13.5 = 1.85/1 = 1.85 

Using Option 1, take the scaled δ� 𝜎𝜎�⁄  and enter 1.85 for delta, as it assumes 𝜎𝜎�= RMSE = 1.  

 
Figure 2-3.  Assessing power in JMP 11 by specifying the estimated δ/σ ratio directly 

Option 2: Provide the actual delta value in the Set Delta for Power option under 
Advanced Options, and then input sigma in the Anticipated RMSE input cell.   The 
challenge with this approach is that the anticipated coefficients are no longer a function 
of delta, so they lose interpretation, and because the delta input cell is not visible, it 
makes it hard to see what you have set for delta and sigma.  With option one, the 
anticipated coefficients provide some feedback regarding δ/σ or SNR, because of the 
relationship that with RMSE = 1, the Anticipated Coefficients = SNR/2. 

1. Go to the red triangle beside  

 

2. Advanced Options 
3. Set Delta for Power 
4. Enter 1.85, click OK 
5. The Anticipated Coefficients and 

Power value update: 

δ/2 
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For JMP 10 users, remember that the SNR is easily modified in the power analysis 
input section.  Power values are reported as Effect Power, which is now different in JMP 
11.  This differences between JMP 10 and 11 Effect Power does not manifest itself in 
two-level designs, so suggestions for interacting with the JMP 11 interface are discussed 
in Chapter 4 regarding categorical factors with more than 2-levels. 

D. Two-level Design Power Overall Comparison 
For the same design, model and SNR, JMP 10 and 11, as well as DX report 

consistent power values. Design Expert and JMP 10 are setup quite similarly for two-
level designs. The user inputs are nearly identical and the SNRs both assume the signal is 
the change in the response. While the JMP 11 interface is different, it still provides the 
same results. Figure 3-4 shows that all three software packages provide identical power 
estimates for two-level factorial designs. 

 
Figure 2-4.  Two-level design comparison of DX, JMP 10, and JMP 11 power calculations 

E. Summary of Power for Two-Level Designs 
• Among the many benefits of two-level designs are efficiencies in the number 

of tests required, and the benefit that all model terms, regardless of complexity 
(main effects and interactions), consume only 1 degree of freedom each. 

• For orthogonal (all design factor columns are pairwise linearly independent), 
balanced two-level designs, without knowledge that certain factors are 
expected to have larger effects, all model terms will have the same power. 

• Power is adversely affected by partial aliasing in a design. 

• Classic 2k-p fractional factorials have model effects completely aliased, so 
power is for alias chains.  Resolution IV and V designs have attractive 
coupling of model terms such that effect sparsity and model heredity often 
point to the correct model term interpretation.  These designs can be built in 
JMP and Design Expert. 
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• The JMP 11 power analysis interface differs substantially from previous 
versions. Using the standard SNR to provide δ and σ is possible only through 
the red triangle in the Advanced Options. 

• JMP 9 differs from JMP 10, JMP 11 and Design Expert.  In JMP 9 the SNR 
signal represents the change in the regression coefficients, which is half the 
change in the response due to an effect used in all the other software variants.  
The resulting interpretation is SNRJMP9 = ½ SNRJMP10, JMP11, DX.  If using JMP 
9, multiply the computed SNR (based on δ and σ) by ½ before performing 
power analysis. 

• For two-level designs, the power calculations are identical for JMP 10, JMP 
11, and Design Expert. 
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3. Power for Designs with Multi-level 
Categorical Factors 

A. Introduction to Categorical Factors 
Many real world designs contain one or more categorical factors.  That said, it is 

always recommended that the test team carefully study each categorical factor to 
determine whether it best thought of as numeric factor, either continuous or discrete or a 
discrete factor.  Numeric factors provide higher power than multiple level categorical 
factors and also support more robust trend analysis. Discrete factors are appropriate when 
the groups are truly nominal.  Consider a test designed to assess tactics against ground 
targets using various ordinance options.  The objective is to determine a delivery mode 
and weapon that can be successful against a variety of targets on the ground, stationary or 
moving.  Miss distance is a reasonable response variable.  Table 3-1 shows two possible 
listings of the factors for this test. 

Table 3-1.  Possible Factors and Levels for a Test Characterized both as Categorical 
Levels and Numeric Continuous Levels 

Factor Categorical Levels Numeric Factor Levels 

Weapon GBU-10, GBU -16, GBU-
12 

Weapon Weight 500, 1000, 2000 

Delivery Loft, Level, Dive Release Angle +10, 0, -30 deg 

Location Eglin, Nellis Visibility 5, 9 nm 

Target Type Car, Tractor Trailer Target Size  60, 568 sq ft 

Target Motion Stationary, Moving Target Speed 0, 30 mph 

Time of Day Day, Dusk, Night Ambient Light 100, 500, 800 lumens 

Range Edge of Launch 
Acceptability Region 
(LAR), Center of LAR 

Range 5, 10 nm 

Hence, the first task when working with categorical factors is to convert as many as 
possible to numeric factors.  Numeric factors provide the capability to make predictions 
of performance at levels not explicitly tested. One example of a more challenging 
conversion for the above problem would be a composite of weapon types such as GBU-
12 (Paveway II), GBU-22 (Paveway III), AGM-65 Maverick and GBU-38 JDAM.  
Enough differences in guidance, control, propulsion exist such that categorical levels are 
most likely the better choice. 
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1. Design Efficiency – Achieved by Trimming Factors or Levels? 
Introducing multi-level categorical factors to a test can complicate the design and 

analysis procedures from an experimental design perspective.  The first challenge is that 
the analysis is limited only to those combinations prescribed as the categorical levels.  
For example, suppose that due to resource limitations, only the GBU-22 of the Paveway 
III class weapon was tested.  Suppose further that the Paveway III showed the most 
promise, but because of its near miss performance, a heavier variant of the Paveway III 
might well have performed better.  If weapon weight (within class) was another variable, 
the statistical model might have revealed the weapon weight most effective against the 
full classes of target types and target speeds. 

The second aspect of concern with specifying categorical factors has to do with the 
number of factor levels.  As the number of levels of a factor increases, statistical power 
typically decreases substantially for a fixed sample size.  Table 3-2 shows the number of 
observations per level for factors with two, four, five, and ten levels. The number of 
observations per level (or pseudo-replication) is the main source of statistical power.  
Therefore, a test with 40 test points might have high power if all of the factors considered 
have two levels, but low power if one factor has two levels and the other factors have 3 or 
more. 

Table 3-2.  Distribution of Observations per Factor Level as the Number of Levels 
Increases 

Factor Levels Obs per level 
(N=20) 

Obs per level 
(N=40) 

Obs per level 
(N=60) 

A 2 10 20 30 

B 4 5 10 15 

C 5 4 8 12 

D 10 2 4 6 

 

From the table it is clear that increasing the number of levels decreases the number 
of observations per level in a linear fashion. It is this reduction in observations per level, 
coupled with the assumptions made about how many factor levels contribute to the factor 
effect that often leads to low power for the many-level factors in a test design. 

The following graphs depict the relative effect on power due to the number of 
factors versus the number of levels of a factor.  Figure 3-1 shows the power for each two 
level factors in a 16-run test.  Note the relatively mild power reductions as the number of 
factors increases for two level factors.  By contrast, Figure 3-2 shows dramatic power 
reductions as the number of levels (q) increases for a single factor.  These graphs 
illustrate the benefit of converting multiple level categorical factors to continuous factors 
for statistical power. 
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Figure 3-1.  Statistical power of two-level full (k=2, 3, 4) and fractional (k=5, 6, 7), 16-run 

designs assuming the number of significant model terms = k 

 
Figure 3-2.  Statistical power for one-factor designs with multiple levels.  Designs are all 

16-runs, with replicates.  JMP Power calculations are for version 11 

All factors 2-level using 2k or 2k-p designs, model 
degrees of freedom = k, 16 runs and δ/σ=2 

1 factor designs, 16 runs and δ/σ=2 
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Figure 3-2 also shows an interesting trend for JMP 11 power calculations.  Previous 
versions of JMP match either the Design Expert power or the Coefficent power.  
However, the default coding for JMP 11 categorical factors results in this saw tooth 
power curve.  This result is not intuitive until we understand the JMP 11 default coding 
structure and the graph suggests that users should not accept the default anticipated 
coefficient values given in JMP 11.  

2. Coding Categorical Factors and Factor Parameters 
For factors with more than two levels, analysts have the advantage of flexibility in 

choosing a way to parameterize the model that accounts for, and ultimately explains the 
factor effects.  One of the most common approaches is to use a contrast scheme that 
permits a direct (all levels but one) and indirect (the last level) comparison between that 
level average and the overall average.  Table 3-3 shows this coding strategy for a 4-level 
categorical factor.  Most software packages (including JMP and Design Expert) use this 
choice of contrasts, sometimes called simple or effects coding. 

Table 3-3.  Nominal Factor Contrast Coefficients for a 4-level Factor using Simple Coding 

Factor Level A[1] A[2] A[3] 

L1 +1 0 0 

L2 0 +1 0 

L3 0 0 +1 

L4 –1 –1 –1 

The scheme in Table 3-3 allows parameters A[1], A[2], and A[3] to estimate the 
differences from factor levels L1, L2 and L3 to the grand mean respectively, while the 
expression –(A[1]+A[2]+A[3]) is the L4 difference from the grand mean.  As interactions 
are added to the model, direct interpretation of the main effects becomes more difficult, 
so it is recommended that graphical interpretation be used instead.   

It appears by inspection of any A[i] column that the comparison for that variable is 
between the ith level and the last level L(q).  However, because all the contrasts have a 
value = –1 in that last cell, the comparison is ultimately with the grand mean.  Consider 
the single 4-level factor example above, and a statistical model of the form, 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + 𝛽𝛽3𝑥𝑥3𝑖𝑖 + 𝜀𝜀𝑖𝑖 

where,  

𝑦𝑦𝑖𝑖 is the ith observed response 

𝛽𝛽0,𝛽𝛽1,𝛽𝛽2 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽3 are parameters for the intercept, the first indicator variable 
parameter (such as A[1] above), the second, and the third factor parameter, 
respectively. 
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𝑥𝑥𝑗𝑗𝑗𝑗 , represents the values for indicator variable j, for observation i 

𝜀𝜀𝑖𝑖 are the assumed independent and normally distributed error terms 

 

𝑥𝑥1𝑖𝑖 = �

1     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2
0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3
−1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4

,    𝑥𝑥2𝑖𝑖 = �

0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
1     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2
0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3
−1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4

,     𝑥𝑥3𝑖𝑖 = �

0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2
1     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3
−1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4

  

 

The estimates for the means of each of the four levels of the factor, relative to the model 
parameters, as well as the grand mean µ, are 

𝜇𝜇1 = 𝛽𝛽0 + 𝛽𝛽1 

𝜇𝜇2 = 𝛽𝛽0 + 𝛽𝛽2 

𝜇𝜇3 = 𝛽𝛽0 + 𝛽𝛽3 

𝜇𝜇4 = 𝛽𝛽0 − 𝛽𝛽1 − 𝛽𝛽2 − 𝛽𝛽3 

𝛽𝛽0 =
𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4

4
= 𝜇𝜇 

Another common coding scheme is to use indicator variables for all but the last 
level of the categorical factor.  However, the effect coding scheme shown above has the 
advantage that the grand mean is preserved in the intercept parameter 𝛽𝛽0.  From above, 
we see the remaining parameters are just the difference between the factor level average 
and the grand mean. 

𝛽𝛽1 =  𝜇𝜇1 − 𝜇𝜇 

𝛽𝛽2 =  𝜇𝜇2 − 𝜇𝜇 

𝛽𝛽3 =  𝜇𝜇3 − 𝜇𝜇 

Not only is it instructive to see the result of what is referred to as simple or effects 
coding on the estimates of the means for each factor level, but the above model 
formulation also reveals that the values of the model parameters (sometimes called 
coefficients) directly contribute to the factor effects.  Based on data from a test, these 
parameters are estimated and evaluated for statistical significance.  The parameter values 
can be hypothesized prior to test as part of a power analysis.  JMP does this in JMP 11, 
by providing default anticipated coefficients for each model parameter.  During the 
following discussion, we will be consistent with JMP terminology in using the term 
“anticipated coefficients” when referring to the parameter estimates of indicator variables 
ahead of test as part of a power analysis.  We will refer to the individual power values 
associated with each individual indicator variable as coefficient power.  By contrast, 
factor effect power refers to the probability of correctly detecting a true effect from the 
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combined contribution of all the indicator variables for a factor or interaction.  Note, as 
shown in Figure 3-1, the factor effect power and coefficient power are equal for any two-
level factor or continuous factor.  

The next sections are intended to assist a user in performing a power analysis with 
Design Expert and JMP 11.  The input information and dialog boxes for JMP are 
different from those in Design Expert, so this guide provides a step-by-step guide for 
both Design Expert and JMP.  More detail is provided for JMP 11, as it is substantially 
distinct from the other versions of JMP.  The interfaces for JMP 10 and JMP 9 are nearly 
identical and relatively simple.  The only substantive difference is the software’s 
expectation for the SNR input.  We start with considerations for power when initially 
constructing designs.   

B. Power Analysis with Multi-level Categorical Factors 
In building the design, the user must input the factors, factor types, levels, intended 

model and number of runs in building the design.   The most important aspect (but easily 
bypassed) is the anticipated model.  The anticipated model contains all the model terms 
the team is interested in estimating based on the design.  For example, in screening it is 
often necessary to be able to estimate main effects and low order interactions.  Recall 
from the two-level design discussion that JMP Custom Design defaults to a main effects 
only model, while Design Expert optimal design defaults to a main effect plus two-factor 
interaction model.  A main effects only model is only appropriate if there is strong 
evidence interactions are not important in a system.  In nearly all initial design situations, 
the model appropriate for the test is either one with main effect plus interactions, or 
perhaps a model of a full second order polynomial. 

Recall too that after a design is built, remember to set the model degrees of freedom 
equal to anticipated number of significant effects – usually equal to the number of main 
effects.  It is always a good idea to include two-factor interactions of interest iteratively, 
making sure sufficient error degrees of freedom are included.  One possible approach 
would be to first perform the power analysis using only the main effects in the model, 
and record those power estimates.  Then substitute main effects for two-factor 
interactions of interest.  Repeat this process until all the two-factor interactions of interest 
have power estimates. 

1. Options for Conducting the Power Analysis 
This power analysis discussion focuses on the iterative process of designing a test 

with sufficient power to meet test objectives.  Therefore, the guide assumes that the test 
planning process is complete and all that is left is to construct a test run matrix.  More 
specifically, the guide assumes that: 

3-6 



• Continuous responses have been identified as the primary responses of interest 
(or an approximate SNR has been determined for binary responses). 

• The number of factors and levels is set, and constraints or restrictions on 
randomization incorporated 

• The design has been drafted 

• Due diligence has resulted in reliable estimates for δ and σ. 

This guide focuses on the iterative process of generating the test design size to 
achieve adequate power. The iterative process involves determining power values for a 
given design, then modify the design until the power is acceptable.  Design modification 
can be in terms of the point distribution or locations, or by increasing the size of the test.  
Higher power values are desirable, more specifically power values greater than 90 
percent should be the goal.  Rarely do tests planned grow in size during execution and 
often the test size shrinks.  Accepting power values lower than 90 during test planning 
often results in lower power probabilities when missing data are taken into account. 
Figure 3-3 shows a notional power curve for a one-sample hypothesis test.  All power 
curves generally have this shape.  As you can see from the curve, after a certain level (90 
to 95 percent) the power gains are not worthwhile for the increased sample size.  
Additionally, below 80 percent power drops off dramatically.  Testers should seek power 
values just above the knee in the curve.  This avoids over testing while protecting against 
the possibility of data loss in testing.  

 
Figure 3-3. Power Analysis Curve for a One-Sample Hypothesis Test 

If the final test size is too large for cost, schedule or resource limitation reasons, 
there are several options to consider.  Test design adaptations can include changing more 
than just the size of the design.  Perhaps the low power values for certain factor effects 
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are due to having too many factor levels, or perhaps too few factor level changes (for 
hard-to-change factors).  Other considerations can involve selecting a different design 
type, or including fewer terms (if justified) in the anticipated model.  Iterate until you 
have achieved the best possible design power given your limitations.  In the end, it is 
recommended always to identify ways to reduce system noise (σ) prior to testing, which 
can greatly aid in improving power and in ultimately ensuring test success. 

C. Power Analysis using Design Expert 
This section forms a user’s guide for calculating power in Design Expert. The 

instructions specified herein are intended for analysts with limited experience with 
Design Expert. After reading this guide, the analyst will be able to perform rudimentary 
power calculations on basic experiments that are typically encountered in operational 
testing.  

1. Generating a Designed Experiment in Design Expert 
Whether power is needed for a design created from scratch or for an existing design, 

the first step in calculating power in Design Expert is to generate the design. Begin by 
selecting “new design” under the file menu. The two-level factorial design page will 
appear. The yellows tabs on the left side of the screen contain four types of designs. The 
design types are distinguished by the regression models they support and their placement 
of points within the design space. 

Common designs encountered in operational testing include general factorial 
designs, two-level factorial designs, and optimal designs. A general factorial design is a 
full factorial that uses categorical factors, which can have two or more levels. A two-level 
factorial design is a full or fractionated factorial that uses continuous factors. General 
factorial and two-level factorial designs create sample sizes that are multiples of powers 
of two. Optimal designs, on the other hand, support sample sizes with an arbitrary 
number of runs. To create an optimal design, the user specifies the factors, sample size, 
and model. Then, an optimization algorithm finds the factors settings that provide the 
most favorable statistical properties for the design. Optimal designs support continuous 
and categorical factors. 

a. Generating a New Design 
To generate a new design, continue by selecting a general factorial experiment from 

the yellow factorial tab. Design Expert prompts the user to input the number of factors in 
the design and the number of levels for each factor. In most cases, the number of factors 
in a design is inconsequential for power (except when the design is saturated or 
unbalanced), but power does decrease as the number of levels within a factor increases. 
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For this reason, consideration should be given to minimizing the number of levels within 
a factor, when possible.  

An example of a case in operational testing where the levels could be minimized 
involves the “light” factor (also known as the “time of day” factor). The analyst is 
interested in characterizing the performance of the system under test during different 
segments of the day and decides to partition the categorical factor into day, dawn, dusk, 
and night. A design with a four-level categorical factor requires approximately 34 runs to 
have 90 percent power (with α = 0.05 at an SNR of two). In contrast, if a three-level 
categorical factor were used, 22 runs would achieve 90 percent power, while if a two-
level factor were used, only 13 runs would provide 90 percent power. By collapsing the 
four levels into two (day, night), the test size could be 61 percent shorter. This tester 
should carefully weigh the importance of resolving four levels of a factor versus the 
consequence on test length.  

After inputting a four-level, a three-level, and a two-level factor, press continue. A 
nearly completely gray screen will appear that provides options to adjust the number of 
replicates or blocking scheme. The number of replicates (here replicates are runs at each 
test condition of the full factorial, so incrementing replicates from 1 to 2 doubles the 
design size) will affect power by increasing the sample size, while the blocking scheme 
will have little effect on power. Press continue again to generate the experiment and 
arrive at the MyDesign page (Figure 3-4).  

 
Figure 3-4.  The MyDesign page in Design Expert 

b. Importing an Existing Design 
Importing an existing design is just as easy as creating a design from scratch. To 

import a design from Excel that has all categorical factors, first, build a general factorial 
experiment with the corresponding quantity of factors and levels. When inputting the 
details of each factor, it is critical the name of each level matches the name from the 
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excel spreadsheet. After properly inputting the number of factors and levels, and the 
names for each level, click continue in the bottom right to generate the design and to 
proceed to the MyDesign page. The newly generated design looks similar to the existing 
design from excel, but the settings of each factor and the sample sizes are different. To 
fix this, adjust the design within Design Expert so that it has same number of runs as the 
existing design. This is done by right clicking a row in the design and selecting Insert 
Row or Delete Rows(s) (Figure 3-5). Once the sample sizes match, copy and paste the 
design from Excel into Design Expert. If all of the cells in the design are populated then 
that is indication that the import was successful. If any cells are blank, the import failed 
and is probably caused by a spelling mistake between the names of the levels of the 
existing and generated design. 

 
Figure 3-5.  Inserting a row into a design 

The process for importing a design with continuous variables is quite similar. 
Choose to build a “Historical Data” response surface design. Select the number of 
continuous factors in the design and set the low and high level of each factor. Enter the 
number of runs (rows) in the design and hit continue. Then, copy and paste the data from 
the existing design. The “Historical Data” approach can be used to build designs with 
continuous factors, both categorical and continuous factors, but not categorical factors 
only. 

Importing a design from an existing file is also possible via a drop down menu from 
the opening page. The option, File > Import from File, allows users to import a design 
from a text file. In our experience, Design Expert can be a bit awkward when it comes to 
reading-in and interpreting the text file. The time it takes to relearn the proper formatting 
for the text file is probably not worth the hassle. For this reason, we suggest the copy and 
paste approach. 

2. Calculating Power Once a Design is Generated  
Returning to the MyDesign page, notice the hierarchy-tree under Notes for 

MyDesign. In the upper left corner of the screen, there are three primary branches: Design 
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(Actual), Analysis, and Optimization. The Design (Actual) branch allows the analyst to 
evaluate the goodness of the design by providing calculations for power, and other 
metrics of design quality. The Analysis, and Optimization branches do not involve power 
and are not covered in this guide. Under the Design (Actual) branch, click on evaluation 
to proceed to calculate power.  

After clicking on evaluation, the Model page (under the “Model” tab) appears. 
Power of a designed experiment is influenced by α, signal/noise ratio, N, model form, 
and the placement of points within the design (design structure). The sample size and 
design structure are predetermined at this point, but the Model page provides the option 
to change the signal/noise ratio and the model form. 

An important option on the Model page is the Order. Order is the model form the 
user intends to fit to the data, once that data are collected. Two common model forms 
used in operational testing are a main effects model and a two-factor interaction model 
(2FI). In the Model page, Design Expert has chosen the two-factor interaction model by 
default, which is recommended if the number of runs are affordable.  If the user chooses a 
number of runs less than what is required for a two-factor interaction model, take care to 
assess the degree of aliasing, potential factor effect correlations, and especially the degree 
of model saturation, resulting in dangerously few error degrees of freedom.  
Recommended design alternatives include 2k-p fractional factorials and optimal designs. 

Another important option on the Model page can be found by selecting the Options 
button. The options menu provides the ability to change the signal/noise ratio (Figure 3-
6). By default, Design Expert calculates power for signal/noise ratios of 0.5,1, and 2. As 
the name suggests, the signal/noise ratio is a ratio of the signal δ, to the noise.  Design 
Expert uses a default α value of 0.05, which is recommended unless a higher level of risk 
can be fully justified.  In those extenuating circumstances, α can be modified under the 
Edit drop down at the top, choose Preferences… and then click on the Math tab.  Within 
the Math page there is an option to change the significance threshold for power. 

 
Figure 3-6.  Signal-to-noise options 

Now that the important options have been configured, click on the Results tab to 
proceed to calculate power (Figure 3-7). On the Results page, power is shown for each 
term in the model for three different signal/noise ratios. Different variations in the 
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presentation of the power table are possible depending on the type of factors in the design 
(continuous, categorical) or the model form.  

 
Figure 3-7.  Results tab 

A power table for a design with a main effects model that has two-level categorical 
factors or continuous factors is easy to interpret; one power value is presented for each 
term in the model. Figure 3-8 shows the power output for a design that includes two-level 
categorical factors with a main effects model. Figure 3-9 shows identical output for a 
design that has continuous factors with a main effects model. Power for two-level 
categorical factors and continuous factors are simpler to interpret than multi-level 
categorical factors because the signal, in the SNR, is easier to define. 

 
Figure 3-8.  Power output for a design with two-level categorical factors. 

 
Figure 3-9.  Power output for a design with continuous factors 
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The signal becomes more difficult to define as the number of levels within a factor 
increases. For a two-level categorical factor, the signal is simply the change in the 
response as the factor changes from one level to the other. For a multi-level categorical 
factor, there are numerous possible contributors to “signal.”  The signal could be defined 
as the change in the response as one level changes to one of the other levels, or possibly 
the change in the average response between a group of levels compared to a group of 
other levels. As a greater number of levels for a factor are introduced, the definition of 
the signal can become more complicated because there are several ways to configure the 
factor level coefficients to generate an effect. 

Design Expert has formulated a definition of the signal for multi-level categorical 
factors. Details on this formulation can be found in Appendix D. To avoid reporting 
power for the numerous possible signals for a single categorical factor, Design Expert 
takes a conservative approach, stating, “For Categorical Terms, The minimum power for 
each group of terms is reported.”  The minimum power is obtained by iteratively 
searching for and finding the pair of factor levels which yield the lowest power for that 
factor in the given design. 

D. Power Analysis using JMP 11 

1. Introduction 
JMP 11 provides the user with an increased flexibility to specify the anticipated 

signal (on the response), compared to previous versions of JMP that simply requested a 
single value for the SNR.  All of the following discussion assumes the use of JMP’s 
Custom Design.  The added flexibility in JMP 11 can be daunting, even for those familiar 
with JMP, for a couple of reasons.  The first challenge is that the user is faced with 
inputting values for anticipated responses or anticipated coefficients as an alternative to 
the single-value SNR.  Default values are set in place and provide a starting point, but as 
we will see, the default coefficients should nearly always be modified to a more 
conservative configuration.  If anticipated responses or anticipated coefficients are 
reasonably known (past test data of essentially the same system), then the user can 
modify the defaults.  For those who are unfamiliar with anticipated responses or 
anticipated coefficients, the following sections (and appendices) provide an explanation 
on how they are involved in the power calculations, as well as guidance for their use.  
The second challenge is that the Signal to Noise Ratio cell in JMP 10 is absent on the 
JMP 11 Design Evaluation, Power Analysis page.  Recall that the user could use the 
option to Set Delta for Power in Advanced Options under the red triangle, but as we will 
see that is not necessarily the best choice if the desire is to match multi-level categorical 
factor power with other software platforms.  Each of the three methods (anticipated 
responses, anticipated coefficients, and setting delta for power) will be addressed. 
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2. Specifying Anticipated Responses 
The first option available in the JMP 11 power interface is to work with anticipated 

responses for each of the design runs.  Although this alternative is arguably the best 
source of information to directly compute power, it is rarely practical.  Most system 
experts, even with a tremendous amount of historical data, would be at best, wildly 
guessing on the vast majority of response values for the typically encountered multiple 
factor designs.  Obviously, poor estimates for the responses would lead to misleading 
power estimates.  As is pointed out by the developers of JMP, this response-value 
interface does have pedagogical utility, so that students can see real-time the connections 
between altering response values and changes to the corresponding factor power 
estimates.  There is also a benefit in seeing hypothetical response values for a pre-
determined set of anticipated coefficients, as will be discussed in the next section. 

Other than obtaining feedback in planning by performing some sort of sensitivity 
analysis on potential misspecification in the coefficient estimates (or just the SNR), using 
the response values as the primary determinant of effect magnitudes in a power analysis 
would most likely lead to off-the-mark estimates of factor SNRs and hence power 
estimates. 

When you create your initial design, and click Make Design, a dialog box appears 
that first lists the experimental runs along with anticipated responses for each run.  The 
anticipated response values are all filled in, which can be a little confusing.  You have the 
option of keeping the defaults or supplying your own values (Figure 3-10).  The response 
values shown essentially originate from the default anticipated coefficients (Figure 3-11).  
Initially bypassing the default anticipated responses makes sense, to study the values of 
the anticipated coefficients in the next dialogue, to better understand the relationship 
between the anticipated coefficients and anticipated responses.  This exercise will enable 
you to make a more informed decision as to whether to change any of the anticipated 
responses. 
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Figure 3-10. Power Analysis Anticipated Response Dialog 

One other aspect of the default anticipated response values can make it difficult for 
the user to associate with those values.  Most of the values are near zero and many are 
negative, which is out of the norm for most analysts accustomed to strictly positive 
responses and can make it harder to recognize effect sizes.  

3. Specifying Anticipated Coefficients 
The next set of values displayed in the power analysis section in JMP 11 is the 

anticipated coefficients.  These estimates are another method of obtaining information 
from the users in order to discern the anticipated effects due to changes in the factor 
settings.  The option to modify anticipated coefficients serves as a direct input to the 
software in providing the information necessary for power.  We expect this method to be 
easier than the anticipated responses for the user to supply the necessary information.  In 
general, the software provides the option to specify the magnitude of the change in the 
response as each of the factor settings change during test (Figure 3-11).  For a two-level 
factor, the levels are coded -1 and +1. The difference between these two levels is two-
units, a coefficient of one means that there is a two-unit change from level 1 to level 2 of 
the factor. 
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Figure 3-11. Power Analysis Anticipated Coefficients Input Dialog 

The anticipated coefficients for factors with more than two levels require more 
deliberation.  Recall (Section 4.A.2) that there are the number of levels (q) minus one or 
q – 1 coefficients for each factor, so for a three-level factors, two coefficients must be 
estimated.  Implied in this parameterization (which is standard in most statistical 
software), is that there is a coefficient associated with the final level of a factor as well.  It 
turns out that the coefficient associated with the last level (if used directly in the model 
would cause a problem mathematically) can simply be calculated by knowing the q – 1 
other coefficients.  This coefficient associated with the last level is just the negative sum 
of the q – 1 coefficients, such that all q coefficients sum to zero.  The coefficients are 
derived from the response values, so they can be used to tune each factor (and two-factor 
interaction) for power according to anticipated influences on the response.   

As a default, JMP 11 sets all anticipated coefficients associated with a factor to an 
absolute value of 1.  For factors with more than two levels, the anticipated coefficients 
take on a value of +1 for the first coefficient, then alternate in sign to return -1 for the 
second anticipated coefficient, then +1 for the third coefficient, then -1 for the fourth, and 
so on.  The coefficients across all q levels, including the last level (without a parameter), 
sum to zero.  So for factors with an odd number of levels, the value of the coefficient for 
the last level is zero, implying that level is not actively contributing to the response effect 
for a power calculation.  For factors with an even q, that last coefficient (Level q) is -1, 
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again such that ∑𝑐𝑐𝑖𝑖 = 0.  One way of understanding JMP’s default coefficient values is 
as follows: With an odd number of factor levels, all but one level differ from each other. 
For factors with an even number of levels, all factor level means differ from one another.  
This choice of values for anticipated coefficients will affect the factor effect power for a 
given factor in such a way that it matters whether the factor has even or odd number of 
levels.  Consider the one-factor case with increasing q and fixed N=16 back in Figure 3-2.  
Note the saw-tooth trend in factor effect power reflecting the inconsistent percentage of 
active effects with even q vs. odd q caused by the default anticipated coefficients. 

Example: Two-factor 3 x 4 replicated full factorial 

Consider an example design involving two factors, one with three levels and the 
other with four levels.  For the purposes of this example and in order to demonstrate 
increasing complexities in power estimation, we will look first at a balanced replicated 
full factorial design, then consider an unbalanced fractional factorial design.   

For the replicated full factorial, this example has two replicates of a 3 x 4 design, 
resulting in 24 runs (Figure 3-12).  Because this design is a balanced replicated full 
factorial, the software packages should all generate the same design.  The design is 
balanced and orthogonal, and regardless of the underlying anticipated general model, 
there are 12 degrees of freedom for pure error from replication to be used in the power 
calculation.  It is standard practice to consider an anticipated model containing only the 
main effects, a reasonable approximation for the model degrees of freedom needed for 
the final predictive model. 
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Figure 3-12. Design Runs for a 3 x 4 two-factor factorial with two replicates 

Factor effect power is typically calculated for each factor or interaction and 
estimates the probability that a factor effect is declared significant when the factor effect 
truly is significant.  In this example the 24-run design supports a main effects model, 
containing two effects: the three-level factor, and four-level factor.  The coefficients in 
the user interface are the coefficient values assumed under the alternative hypothesis, 
while the coefficients under the null are equal to zero (not shown in the interface). 

Factor effect power depends on the area under a reference F distribution associated 
with the alternative hypothesis.  The F-distribution is the appropriate reference 
distribution for a statistical test to determine effect significance as a ratio of mean 
squares, which are variances.  Factor effect power is calculated for the three-level factor 
by first computing a critical F value, which is the F value at the 100(1-α) percent 
cumulative percentile of the F distribution under the null hypothesis. The F distribution, 
shown in Figure 3-13, under the null hypothesis is a function of the numerator and 
denominator degrees of freedom. The numerator degrees of freedom for a factor’s effect 
power is equal to q-1 (q-1=2 for three-level factor). The denominator degrees of freedom 
is equal to the number of runs in the design (24) minus the number of parameters (p) in 
the model (p=6, including the intercept). Then, a non-centrality parameter is calculated 
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using the coefficients under the alternative hypothesis. Power (1-β) is determined from a 
non-central F distribution using the non-centrality parameter, numerator degrees of 
freedom, denominator degrees of freedom, and critical F value.  For complete details on 
JMP 11’s factor effect power calculation, see Appendix C. 

 
Figure 3-13.  Distribution of F statistic Under the Null and Alternative Hypotheses 

Coefficient power is typically calculated for each parameter in the model. The three-
level and four-level factors are made up of two and three parameters, respectively, so for 
this example power would be calculated for five parameters. The coefficient power 
calculation is quite similar to the factor effect power calculation. The numerator degrees 
of freedom for coefficient power are always equal to one. Similar to factor effect power, 
the denominator degrees of freedom is equal to the number of runs in the design minus 
the number of parameters in the model. Power is determined from a non-central F 
distribution using the non-centrality parameter, numerator degrees of freedom, 
denominator degrees of freedom, and critical F value.  For complete details on JMP 11’s 
coefficient power calculation, see Appendix C. 

4. Specifying Power using Advanced Options 
The Advanced Option approach for entering a delta value for power described in 

Chapter 3 is also available for designs with multi-level categorical factors.  However, 
because of the way the SNR is distributed to the anticipated coefficients, this approach 
should only be used without modification if the user desires that all the factor indicator 
variables be active (nonzero and different anticipated coefficients).  The direct 
applications of the SNR approach will lead to overly optimistic power estimates in JMP 
11 for multi-level categorical factors.  Multi-level categorical factor power values in JMP 
11 using the default anticipated coefficients, even if manipulated by this advanced option, 
essentially give effect sizes larger than that specified by the SNR, because all the factor 
parameter coefficients are set to SNR/2.  As a result the corresponding effect size grows 
as the number of factor levels increases, inflating the power estimates.  Further 
explanation is provided starting in Section 6 below.  
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5. Default Anticipated Coefficient Power 
Consider two-factor replicated factorial example shown in Figure 3-12.  Once the 

two-replicate full factorial design has been specified in JMP 11 (factors, levels, model, 
and N), choose Make Design.  The design will be constructed, displayed, and the Power 
Analysis interface will appear.  Take note of the default coefficients for this example 
(Figure 3-14).  An intercept coefficient is followed by the three-level parameters, X1 1 
and X1 2.  The alternating +1, -1 coefficients are displayed for both of the factors.  It may 
be helpful to think of coefficients for the qth level of each factor.  For the three-level odd 
factor X1, the 3rd level (X1 3, not permitted in the model because it would result in too 
many parameters) is 0, while the four-level even factor X2 forth level (X2 4) is -1.  
Consideration of these last levels is useful when contemplating the calculation of the 
factor effect power values. 

 
Figure 3-14. Default Coefficients and Power for 3 x4 24-run Design 

Take a look at the reported power values using the default coefficients.  First note 
that the coefficient power estimates differ from the factor effect power, for the same 
factors.  Secondly, the coefficient power values within a factor are all the same, which is 
due to the balanced, orthogonal aspects of the design.  The coefficient power values 
reflect only the contribution of one indicator variable to the response, while the factor 
effect power reflects the cumulative contribution of all a factor’s indicator variables.  
Naturally it makes sense that the factor effect power would be larger than the coefficient 
power, especially since factor effect power assumes each of the q-1 parameters 
contributes to changing the response average.  In nearly all instances, placing nonzero 
values in each of the parameter cells for a factor will result in factor effect powers greater 
than the coefficient power values, and the relative difference between coefficient power 
and factor effect power increases as q increases.   

Next note the power for the four-level factor (X2) versus the three level (X1) power. 
The four-level factor has greater factor effect power than the three-level factor, despite 
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the fact that each parameter has lower power.  The default coefficients in JMP 11 result 
in the even q factor with four levels having four levels active (nonzero), as opposed to the 
odd q, three-level factor having only two active levels.  The other point is that the factor 
effect power for the three-level factor is the same as the factor effect power from JMP 10 
and DX (what we call most conservative power), because the default coefficients have 
only two active levels which is the same approach taken in the most conservative 
approaches to estimating power.  The next section describes this most conservative 
approach to computing factor effect power obtained by zeroing out some of the JMP 11 
anticipated coefficients.   

6. Configuring the JMP 11 Coefficients for Most Conservative Power 
If the user is interested in modifying the anticipated coefficients and desires to 

configure a multi-level factor for a conservative estimate of power, there is a general 
approach which will match the values obtained in JMP 10.0.0 (whereas the JMP 10.0.2 
approach is presented in Section 4.D.8) and Design Expert.  This approach to be used 
with categorical factors with more than two levels mimics the approach used with two-
level factors by assuming that the mean response of one level differs from the another 
level, while all the other levels do not contribute to changing the response mean.  To 
implement such a condition, just set the values of the anticipated coefficients of all but 
one or two factor’s anticipated coefficients to zero.  In our two-factor replicated design 
example, X1 is a three-level and X2 a four-level factor, and a 24-run replicated full 
factorial design is built.  In this case all the parameters (factor levels) have the same 
number of observations, and the coefficient power probabilities within a factor using the 
default anticipated coefficients (Figure 3-14) are all identical.   

A coefficient solution for most conservative power is simply to set one of the factor 
anticipated coefficients to one, while changing all the remaining coefficients (for that 
factor) to zero, which is displayed in Figure 3-15.  Note that setting one coefficient to one 
results in the invisible last parameter level Xi[q] = -1, so this assignment of coefficients 
assumes δ/σ = SNR = 2.  In general, set the nonzero coefficient(s) equal to SNR/2.  Be 
sure to Apply Changes to the Anticipated Coefficients.  After setting the nonzero 
coefficient(s) to the desired nonzero SNR/2, the coefficient power should be ignored; the 
factor effect power value should reflect that minimum power estimate for that multilevel 
factor.  In Figure 3-15, note that the conservative power is 0.918 for X1, and 0.744 for 
X2, which better agrees with the notion that increasing q decreases power. 
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Figure 3-15. Coefficients for Most Conservative Power for 3 x4 24-run Design 

As you can see in Figure 3-16, this most conservative power estimate for the 3 x 4, 
two-replicate example, agrees with Design Expert and JMP 10. 

 

 
 

 
Figure 3-16.  Design Expert 9 and JMP 10 output showing power calculation for 3 x 4 
design with two replicates and 24 runs.  Power matches JMP 11 conservative power. 

For the case of unbalanced, non-orthogonal fractional designs, it is recommended 
that the user replace the value given the coefficient with the smallest coefficient power 
with the desired δ/σ.  In some cases there is a tie for minimum default coefficient power, 
so in that case form a + δ/σ, - δ/σ contrast with the two smallest power parameters.  The 
goal is to locate the two parameters which would result in the lowest (most conservative) 
power for that factor.  The parameters with the lowest coefficient power under the default 
combination of anticipated coefficients are most likely those that will result in the factor 
having the lowest power when only a pair of coefficients are nonzero.  The parameters 

Design Expert 9 JMP 10 
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displaying the lower power with the default coefficients typically have the least 
observations per level for that factor.  An example of this relationship is given in the next 
section.  

Example: Most Conservative Power for 3 x 4 x 5 Fractional Factorial Design 

Consider an example design involving three factors, one with three levels, one with 
four levels and the last with five levels, and 38 runs.  This design could potentially 
estimate all the main effects plus two-factor interactions assuming the points are 
appropriately placed, as the main effect plus interaction model requires 36 degrees of 
freedom.  Two additional runs are added for lack of fit, such that N = 38.  This 38-run 
design will be unbalanced for all factors, as N is not a multiple of three, four or five.  In 
JMP or DX, the design is fairly easy to build, one just needs to specify the general model 
as including all the main effects and two-factor interactions, and specify the number of 
runs.  Figure 3-17 shows the JMP 11 steps before and after building the design along with 
the screen captures.  
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Figure 3-17.  Power analysis example using the most conservative power approach in JMP 

11.  Most conservative power shown as Factor Effect Power bottom right. 
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Note that there is a purposeful change to the model form after building the design 
and before performing the power analysis.  The model used in building the design 
includes the full polynomial order determined in planning (e.g., main effects plus two-
factor interactions), while the model selected for power analysis contains a reduced 
model, having approximately the number of terms anticipated to be significant.  The 
importance of this step is emphasized in the upcoming practice tips, and is due to not 
having sufficient degrees of freedom for error (only the two from lack of fit), so power 
will be drastically underestimated.  If the model is not changed to only main effects prior 
to power analysis, the power values for this design are all less than 40 percent, including 
the default effects power estimates! 

The default anticipated coefficient power values vary over a range within each 
factor, due to the unbalanced nature of the design.  The first step in obtaining the most 
conservative power estimates is to make note of the parameters with the lowest power for 
each factor, to later set those anticipated coefficients nonzero, while setting all other 
coefficients for that factor equal to zero.  For this example, see that the coefficient power 
values are all greater than 80 percent with power values decreasing as q per factor 
increases.  Effect Power is also reported, and those values are all impressive, with the 
even numbered four-level factor having the highest power. 

The next step for most conservative power is to modify the anticipated coefficients 
such that each factor has mostly zero entries, and the nonzero cell(s) are set to a value of 
SNR/2.  Choose the nonzero entry to be the parameter having the lowest coefficient 
power for that factor.  In this example, we select X1 2, X2 2, and for X3 we select a 
contrast based on the two parameters X3 2, and X3 3.  The reason for choosing the 
contrast between Level 2 and Level 3 for X3, is that to obtain the most conservative 
power estimate requires selection of the two levels with the fewest observations.  Because 
those two levels have the same default coefficient power of 0.813, it is likely those two 
levels have the fewest observations.  So instead of contrasting a chosen level with the last 
level, as is done for X1 and X2, we make the contrast in X3 between two displayed 
levels.  In general, the most conservative power should be based on a comparison of the 
two levels with the fewest observations.  Some trial and error might be used to find the 
combinations giving the lowest power.  The general procedure for determining the most 
conservative power in JMP 11, or to find the equivalent power in JMP 10 is provided in 
the process flow diagram (Figure 3-18). 
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Figure 3-18.  Process flow diagram for using JMP 11 or JMP 10 to estimate equivalent 

power 
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levels, which we will see later, agrees with the other software platforms.  The next 
section provides a survey comparison of this JMP 11 most conservative power approach 
with standard reported power from JMP 10 and DX.   

7. JMP 11 Power Reporting 

a. Power for Coefficient Estimates 
The most significant change to JMP 11 power reporting for designs involving multi-

level categorical factors, is that it provides two assessments of power for such a factor 
type.  The first variant of power estimate is referred to in JMP 11 as power for the 
parameter using anticipated coefficients.  There are q-1 parameters, hence q-1 coefficient 
power values reported per factor, and depending on the design built, these estimates 
within a factor may not agree.  For balanced, orthogonal designs the coefficient power 
estimates within a factor should agree for each factor parameter.  If an optimal design is 
generated, and especially if the number of runs is not a multiple of q for a factor, there 
must be an imbalance in terms of the number of observations per factor level.  
Accordingly, some levels (and associated parameters) will receive correspondingly lower 
or higher power values.  Figure 3-19 shows coefficient power for an unbalance design. 
JMP 11 reports those power values for each model parameter, essentially a level of detail 
further than factor effect power.  You can assume the last level’s (qth level) power will be 
similar to the other coefficient power values and to be conservative, you could just 
choose the minimum coefficient power to report for that factor.  Typically though, just a 
single power value for a multi-level factor (or interaction) is sufficient.  

 
Figure 3-19. Power Analysis Results for Coefficient Power 
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The power calculation for the parameter estimate is computed by treating each 
factor parameter independently and computing a probability that the single parameter 
with anticipated coefficient magnitude shown can be detected given it is truly significant.  
An anticipated coefficient of magnitude one is equivalent to a SNR ratio of two for that 
parameter.  The power calculation ultimately uses these anticipated coefficients to 
compute the non-centrality parameter for the alternate hypothesis, which is then used to 
find the power probability.  More details regarding the calculation of the non-centrality 
parameter for the coefficient power is given in the appendix. 

In many situations, the coefficient power values reported within a factor, with 
equivalent magnitude anticipated coefficients for a proposed design typically vary over a 
range of less than 10 percent, relative to each other.  As we will see in a subsequent 
section, JMP 11 coefficient power estimates are more closely aligned with JMP 10 and 
DX factor effect power estimates than they are with JMP 11 factor effect power.  The 
JMP 11 factor effect power, discuss following this section, tends to provide more 
favorable power estimates than most other software power estimates, assuming the exact 
same design and SNR ratio. 

Coefficient power formulations are detailed in Appendix C, but an example 
calculation is provided here.  Consider a one-factor design, where the factor has four 
levels and the design contains four replicates of each of the four levels, for a total of 16 
runs. To determine the power of the second parameter of the four-level factor, say X1 2 
in JMP, the non-centrality parameter 𝜆𝜆2 is calculated as 

 

𝜆𝜆2 = (𝑸𝑸3𝒃𝒃)𝑇𝑇(𝑸𝑸3(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑸𝑸3
𝑇𝑇)−1𝑸𝑸3𝒃𝒃 = 5.33  ,   where 

 

𝑸𝑸 = [0 0 1 0] , 𝒃𝒃 = [1 1 −1 1]𝑻𝑻, 

 

and 𝑿𝑿 is the model matrix with 16 rows and four columns. The first column of 𝑿𝑿 contains 
1’s and corresponds to the intercept, while columns two through four makeup the simple 
coding for the q-1 factor parameters.  𝑸𝑸𝑗𝑗 is a one-dimensional row vector of length p, the 
number of model parameters, and contains all zeroes except for the 𝑗𝑗th parameter, which 
is set equal to one.  The index j begins with j=1 for the model intercept, so j=3 here 
corresponds the second factor parameter.  The critical F value is calculated as 𝐹́𝐹2 =
𝐹𝐹−1{1 − 𝛼𝛼, 1, 𝑛𝑛 − 𝑝𝑝} = 𝐹𝐹−1{1 − 0.05, 1, 16 − 4} = 4.75.  Power is then computed as 
𝑃𝑃2 = 1 − 𝐹𝐹�� 𝐹́𝐹, 1, 𝑛𝑛 − 𝑝𝑝, 𝜆𝜆2� = 1 − 𝐹𝐹�{ 4.75, 1, 16 − 4, 5.33} = 0.56.  For further details 
on these calculations, see Appendix C. 
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b. Power for Effects 
In addition to the coefficient power, JMP 11 also reports a factor effect power 

probability for each factor and interaction effect.  JMP 11 factor effect power provides 
the user flexibility to specify the contribution to the factor or interaction effect by 
specifying values for each of its parameters.  This capability can be advantageous for 
those with knowledge or even reliable expert judgment about the potential causal effect 
of factor level subgroups on the response.  Suppose, for example, that there is a five-level 
factor to be varied in an upcoming test.  We will assume a one-factor design with three 
replicates, giving 15 runs.  All the planning has been completed including the other 
factors, the design, the anticipated model, as well as reliable estimates of δ and σ.  For the 
five-level factor, it is presumed that levels 1, 2, and 4 will most likely act in a similar 
fashion, and will all positively affect the response by about the same amount.  Levels 3 
and 5 are expected to move the response in the opposite or negative direction, again by 
about the same amount each.  For the purposes of this example, and to keep the math 
fairly simple, assume that the estimated 𝛿𝛿 𝜎𝜎⁄ = 2.5.  This scenario with all the levels 
active (some positive, some negative) actually corresponds to a factor effect much larger 
than the 𝛿𝛿 𝜎𝜎⁄ = 2.5 specified, reporting power values often much larger than the 
conservative power value.  Table 3-4 shows the coefficient estimates that would give the 
desired effect contribution from all the factor levels. 

Table 3-4.  Example Factor Coefficients for a 5-level Factor 

Level JMP Parameter Anticipated Coefficient  

1 X1 1 1 

2 X1 2 1 

3 X1 3 -1.5 

4 X1 4 1 

5  -1.5* 
*anticipated coefficient obtained such that all coefficients sum to zero, but this coefficient is not shown 
in the software and not a model parameter 

The approach taken in generating the anticipated coefficients (ci) is to assign a +1 to 
factor levels 1, 2, and 4 because they are all positive effects of the same magnitude.  
Then, assign negative coefficients to levels 3 and 5, such that they are equal in magnitude 
and adhere to the requirement of a contrast, which is ∑ 𝑐𝑐𝑖𝑖 = 0𝑞𝑞

𝑖𝑖=1 .  The resulting 
coefficients now have a range of (max(ci) – min(ci)) = +1 – (–1.5) = 2.5 which is one 
way to view the detectable effect magnitude (δ).  Again, what makes this factor effect 
power different from other software package multi-level categorical factor power 
computations, is that more than the minimum number of levels are active (nonzero 
coefficient estimates).  So in this case, the effective δ is more than just the gap between 
the smallest and largest coefficients, because up to q levels are contributing to changes in 
the response.   
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To illustrate the calculation for factor effect power using the instructions supplied in 
Appendix C, consider the one-factor design above with 15 runs. The non-centrality 
parameter 𝜆𝜆 is calculated as 

 

𝜆𝜆 = (𝑳𝑳𝑳𝑳)𝑇𝑇(𝑳𝑳(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳𝑇𝑇)−1𝑳𝑳𝑳𝑳 = 22.5,  
where 

 

𝑳𝑳 = �

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

� , 𝒃𝒃 = [1 1 1 −1.5 1]𝑻𝑻, 

 

and 𝑿𝑿 has 15 rows and five columns.  The first column of 𝑿𝑿 contains 1’s and corresponds 
to the intercept, while columns two through five makeup the contrast coding for each of 
the five levels.  The critical F value is calculated as 𝐹́𝐹 = 𝐹𝐹−1{1 − 𝛼𝛼, 𝑞𝑞,𝑛𝑛 − 𝑝𝑝} =
𝐹𝐹−1{1 − 0.05, 4, 15 − 5} = 3.48.  Power is then computed as 𝑃𝑃 = 1 − 𝐹𝐹�� 𝐹́𝐹, 𝑞𝑞,𝑛𝑛 −
𝑝𝑝, 𝜆𝜆� = 1 − 𝐹𝐹�{ 3.48, 4, 15 − 5, 22.5} = 0.87.  For complete details on this calculation 
procedure see Appendix C. 

c. JMP 11 Default Factor Effect Power and Comparison with Coefficient 
Power 

The default coefficients for q-level categorical factors consists of all active 
coefficients of magnitude = 1, alternating sign starting with +1.  In the case of odd q, the 
final coefficient is set = 0 (again to satisfy the contrast constraint ∑ 𝑐𝑐𝑖𝑖 = 0𝑞𝑞

𝑖𝑖=1 ).  These 
nonzero coefficients all contribute to δ, such that the majority of the time for factors with 
more than three levels the factor effect power greatly exceeds the most conservative 
power. 

The two variants of a two-factor design (3 x 4) used in the previous sections seem to 
point to problem with outright accepting JMP 11’s default coefficient estimates. Figure 3-
20 shows a simple investigation for a one factor test design into the influence the number 
of runs (N) has on parameter and factor effect power for a three-level categorical factor.  
Power for δ/σ=2 is plotted for not only JMP 11 coefficient power and factor effect power, 
but also for Design Expert (DX) 9.  As we noted earlier for the three-level design, DX 
agrees perfectly with JMP 11 factor effect power, because JMP 11 defaults to the 
conservative coding for a three level factor. Interestingly, for the three-level design, the 
coefficient power is larger than the factor effect power for small N, while the reverse is 
true as N increases, albeit minor differences.   
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Figure 3-20. Power estimates for a 1-factor categorical three-level design, comparing three 
sources: JMP 11 Coefficient Power, JMP 11 Factor Effect Power, and Design Expert (DX) 9 

power 

The situation for the eight-level design is quite different.  Figure 3-21 shows a 
similar comparison for an eight-level design. None of the three default power sources 
agree, creating possible confusion for a user or an organization.  Design Expert is the 
more conservative, JMP 11 coefficient power gives 10 to 15 percent higher power than 
DX, while JMP 11 factor effect power differs substantially, reporting 20 to 45 percent 
higher power than the JMP 11 coefficient power.  Notice that when JMP 11 anticipated 
coefficients are modified to the conservative approach the power calculations match the 
Design Expert values exactly. 
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Figure 3-21.  Power estimates for a 1-factor categorical 8-level design, comparing: JMP 11 

Coefficient Power, JMP 11 Factor Effect Power, Design Expert (DX) power, and JMP 11 
conservative power. 

The bottom line recommendation from this guide is to use the most conservative 
power algorithm to configure the anticipated coefficients in JMP 11 in order to 
achieve power estimates consistent across software packages.  Additionally, this power 
ensures that the test will be adequate if at least two levels of the categorical factor are 
active.  The default specifications require that all levels of the factor are active to achieve 
the specified power.  

8. Alternative Power Specification (JMP Semi-Conservative) 
As an alternative to most conservative power, consider a factor effect in which all 

the levels are active (non-zero) but the combined contribution by each level is less than 
those proposed by the JMP 11 defaults.  Perhaps some prior knowledge exists that, for a 
given factor, all but one of the levels have similar contribution to the factor effect in their 
sign and magnitude, and are opposite in sign with the remaining level of that factor.  This 
alternative, called the semi-conservative approach (used in JMP 10.0.2), is executed by 
setting one level of the coefficient to: 

𝑐𝑐1 =
−(𝛿𝛿 𝜎𝜎⁄ ) ∗ (𝑞𝑞 − 1)

𝑞𝑞
 

where q is the number of levels for that particular factor.  The remainders of the 
coefficients are set to: 
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𝑐𝑐𝑖𝑖 =
(𝛿𝛿 𝜎𝜎⁄ )
𝑞𝑞

 

Notice that this formulation results in the sum of the coefficients being equal to zero.  
Table 3-5 below provides some examples of coefficients in terms of the SNR for multi-
level categorical factors using this semi-conservative approach. 

Table 3-5. Semi-Conservative Coefficients for Multi-Level Categorical Factors  

 3 Level Factor 4 Level Factor 5 Level Factor 

1st Coefficient -0.667(𝛿𝛿 𝜎𝜎⁄ ) -0.75(𝛿𝛿 𝜎𝜎⁄ ) -0.8(𝛿𝛿 𝜎𝜎⁄ ) 

Remaining 
Coefficients 0.333(𝛿𝛿 𝜎𝜎⁄ ) 0.25(𝛿𝛿 𝜎𝜎⁄ ) 0.2(𝛿𝛿 𝜎𝜎⁄ ) 

These coefficients are termed semi-conservative because they will result in higher 
power calculations than the conservative approach.  This is because the absolute value of 
the large coefficient is larger than the conservative approach for a fixed SNR.  

E. Power Comparison across Packages  
In general, the power analysis approach that both JMP 10 (we omit JMP 9 due to the 

SNR definition difference) and DX 9/8 software programs take for power analysis is to 
determine the most conservative power configuration (for more than two factors) of the 
factor level contributions by iteratively computing power for all pairs of factor levels, 
until the lowest power combination is found. 

Several design types which involve varying the number of factors, number of levels 
per factor, and total number of runs are considered for a power analysis comparison.  
Software versions JMP 10, JMP 11 and DX 9 are compared.  Power is reported as factor 
effect power. The designs considered differ in terms of the number of factors (k = 2, 3), 
number of levels per factor (q=2, 3, 4, 5, 6, or 8), number of runs (N=p +5, p+20, where 
p=k +1)).  For example a 3-factor design, may have Factor A with qA = 4, and Factor B 
with qB = 6, and Factor C with qC = 8, which is written as 4 x 6 x 8.  Table 3-6 provide a 
summary of the 16 designs considered to compare across the software packages.  Each of 
the 8 design types consisted of a smaller and moderate number of runs, for 16 total 
designs. Smaller run designs have 5 degrees of freedom error beyond a main effects’ 
model, and larger designs have 20 degrees of freedom error beyond a main effects’ 
model. 
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Table 3-6.  Designs for Power Comparison 

2-Factor Designs  Runs (2 designs) 3-Factor Designs Runs (2 designs) 

2 x 3 9, 24 2 x 3 x 4 12, 27 

2 x 4 10, 25 2 x 4 x 6 15, 30 

4 x 5 13, 28 4 x 5 x 6 18, 33 

4 x 6 14, 29 4 x 6 x 8 21, 36 

The designs in Table 3-6 provide a diverse set of likely scenarios for testing in a 
restricted resource environment, especially when multi-level categorical variables 
dominate a system description.  The designs are not unusual in run number too, ranging 
from 9 to 36 runs.  We would expect some of the designs to have reasonable power, 
while others would have moderate to low power.  The set of 16 designs were used to 
compare all the power estimation approaches discussed in this guide.  Included in the 
comparison are JMP 9, 10 (listed as 10.0.0), 11 default, 11 parameter, 11 conservative, 
and Design Expert.  Also included are the power estimates from JMP 10.0.2 and power 
obtained by manipulating anticipated coefficients in JMP 11 to mimic JMP 10.0.2 power 
(called semi-conservative power).  Power for JMP 10.0.2 is detailed in Appendix C.  For 
the two-level factors, the power is the same, but the disparities increase as the design 
considered increases in number of factors and in the number of factor levels (Figures 3-
22 a. and b).   

Notice in Figure 3-22 that JMP 11 conservative power compares well with JMP 
10.0.0 and Design Expert, while JMP 10 semi-conservative power compares well with 
JMP 10.0.2.  In fact, differences in the power reported are due to slight differences in the 
optimal designs generated by the two packages.  JMP 11 coefficient power can be used to 
understand the JMP 9.0 power calculations in these scenarios. 
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a)    

b)    
Figure 3-22.  Power analysis comparison across software platforms using SNR=2 and all methods discussed in 
this guide for 16 2- and three-factor mixed level designs.  Part a) contains 2-factor designs while part b) shows 

three-factor designs.  Smaller run designs have 5 df error over a main effects model, and larger designs have 20 
df error.   
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F. Power Analysis Practice Tips 
• Recall that power is only one of many design metrics.  Develop a table of 

metrics not just for assessing one design, but several design alternatives.  
Other notable design metrics include the anticipated model form, error 
degrees of freedom, correlation measures such as the variance inflation ratio, 
the number of replicate runs, the number of factor levels, the range of power 
values, and prediction variance metrics such as the median and 90 percentile 
standard error of the mean across the design space (using fraction of the 
design space).  For more information on these other useful metrics see, 
DOT&E Memo, July 23, 2013 memorandum, “Best Practices for Assessing 
the Statistical Adequacy of Experimental Designs Used in Operational Test 
and Evaluation.” 

• Make sure you know what is assumed if you are to accept all the default 
settings in the power analysis.  Each software and version has built-in defaults 
for the model (number of terms, hence degrees of freedom for the model and 
degrees of freedom for error), and either the values for δ and σ, or the δ/σ 
ratio.  It is always a good idea to check the defaults and even better to modify 
them to suit your problem. 

• Often we build very efficient designs, particularly for screening.  If few (or 
no) design runs are available to estimate error, power is greatly compromised 
(or un-estimable if degrees of freedom for error = 0).  Be careful to consider 
whether the design built is near saturated in runs (N) relative to the anticipated 
general model.  A design is saturated if N = p (the anticipated general model 
parameters).  For design construction and power analysis, there are two model 
forms to construct.  The first model is used in building the design points and 
contains all the model terms you want to be able to estimate.  This initial 
model, used to generate the design, is often called the general model (e.g., 
main effects plus two-factor interaction).  The second model is used directly 
in power analysis only and the objective in creating this model is that it 
contains about the right number of model terms (translated to degrees of 
freedom) that will be in the final model.  The effect sparsity principle 
combined with decades of DOE experience has suggested that this second 
model for power analysis contain approximately the number of degrees of 
freedom in a model with only the main effects.  The anticipated general model 
has 𝑝𝑝gendegrees of freedom, while the model for power has p power degrees 
of freedom, where 𝑝𝑝gen > 𝑝𝑝power.  For a two-level design with a first order 
(main effects) plus two-factor interaction anticipated model, 𝑝𝑝gen = 1 + 𝑘𝑘 +
𝑘𝑘(𝑘𝑘−1)

2
.  When computing power for a design where 𝑁𝑁 ≅ 𝑝𝑝gen, choose a model 

for power analysis to include only main effects, 𝑝𝑝power.  The idea is that the 
number of main effects is roughly the number of model terms (main effects or 
interactions) we expect to be significant, so this approach is sound. So, when 
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𝑁𝑁 ≅ 𝑝𝑝gen, power is only reported for main effects.  Power for specific 
interactions can be estimated by adding one interaction effect to the model at a 
time. With multi-level categorical factors, it is a best to  check the power of 
interactions as well, so you can iteratively exchange main effects for 
interactions, keeping enough (more than two) degrees of freedom for error.   

• In Design Expert, when constructing a design, you are asked for delta and 
sigma.  The default model for power analysis is main effects only, but it can 
be changed as well, under Options (Figure 3-23). 

 

Figure 3-23.  Design Expert Power Wizard defaults to a model with main effects only, but 
can be modified 

• For the near saturated (𝑁𝑁 ≅ 𝑝𝑝gen) case in JMP, first make sure to specify the 
full anticipated model prior to building the design.  For example, suppose 
you have five two-level factors and are considering 16 runs for screening and 
you need to build a design to assess power.  Understand the default model in 
JMP is main effects only, so you’ll need to add the two-factor interactions 
(Figure 3-24). 
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Figure 3-24.  JMP model default is main effects, so for a screening design, also select 
Interactions, 2nd 

• Then build the design, and prior to performing the power analysis, ensure 
sufficient error degrees of freedom.  In the above example of a two-level 
screening design, choosing the 𝑝𝑝power = 𝑘𝑘 is reasonable.  Remove the 
interactions from the model after the design is built, then go to the power 
analysis section and Apply Changes to the Anticipated Coefficients.  Only the 
main effects should remain in the power analysis.  If the model is not reduced 
from 𝑝𝑝gento 𝑝𝑝power the power values will be very low because the error 
degrees of freedom are near zero. 

• If sufficient error degrees of freedom exist for the anticipated model (i.e., 
more than five error degrees of freedom), you can just accept the same model 
used to build the design, and check the power for all the model anticipated 
effects of interest. 

• If the design objective involves optimization (as opposed to characterization 
or screening), then a response surface design is most likely needed.  For most 
response surface investigations the sample size is adequate and statistical 
power is not important relative to the prediction variance metrics such as plots 
of standard error of prediction, the fraction of design space plot, and various 
optimality efficiencies.  Please note though, that second order screening 
designs are now available, which are small run designs, so be careful not to 
neglect power in response surface designs where 𝑁𝑁 < (𝑘𝑘+1)(𝑘𝑘+2)

2
, that is the 
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number of runs (N) is less than what would be required for the k-factor full 
quadratic model. 

G. Summary of Power for Multi-Level Categorical Factors 
• Statistical power for categorical factors with more than two levels requires an 

additional decision or assumption be made regarding the nature of the factor 
effect. 

• Because each of the factor levels can be thought to stand on their own, a 
common modeling approach used is indicator variables. 

• For a factor of this type, one must decide how many levels are active, 
assuming that the effect is real. 

• Standard approaches historically (and currently in JMP 9/10 and DX) for 
active levels is to assume the most conservative scenario with only a pair of 
levels different by δ.    

• Conservative power is reported by default in JMP 9/10 and DX, whereas JMP 
11 allows the user to specify the factor level effects. 

• JMP 11 power analysis is purposefully adapted to provide the user flexibility 
in tailoring factor effect power for categorical factors with more than two 
levels. 

• JMP 11 default anticipated coefficients make all factor levels active (with 
coefficient SNR/2), except the last level for factors with odd numbered levels. 

• JMP 11 also provides coefficient power, which gives the power for that 
level’s indicator variable.  JMP coefficient power values more closely align 
with effect most conservative power, but enough differences exist (Figure 3-
22) not to use it that way. 

• JMP 11 provides an option for the user to input delta under Advanced 
Options.  While this option is useful for two-level designs, when using it for 
multi-level categorical factors, JMP inserts a SNR/2 value for every parameter, 
equivalent to the JMP 11 default approach.  As such the coefficient and factor 
effect power values will generally be overly optimistic relative to other 
software, including JMP 10. 

• JMP 11 anticipated coefficients can be structured fairly easily for most 
conservative factor effect power. 

• Due to the differences between most conservative factor effect power, 
coefficient power and default factor effect power, it is important that the user 
understand the assumptions and interpretation of these different estimates 
when using software to estimate power involving more than two level factors. 
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• It is highly recommended, to ensure test adequacy and for consistent 
reporting across software platforms, that users of JMP 11 configure the 
anticipated coefficients for most conservative power. 
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4.Conclusions and Recommendations 

A. Extension to Additional Analysis Model 
This guide provided a detailed discussion on power calculations for continuous 

factors, two-level categorical factors, and multi-level categorical factors.  The models 
discussed included main effects and second order interactions. The concepts behind the 
power calculations can be simply extended to higher order models involving higher order 
interactions, quadratic terms, and other polynomial terms. 

Higher order interactions follow the rules of the factors involved in the interaction.  
Therefore, if all of the factors involved in the interaction have two-levels the simple 
recommendations for the two-level factors apply.  If one or more of the factors involved 
in the interaction has more than two levels than the multi-level categorical response rules 
apply. 

Quadratic terms provide another interesting contrast between the software packages.  
Design Expert actually doubles the coefficient in the power calculation for the quadratic 
effect.  DX does this because they only consider quadratic effects over half of the design 
space (0 to 1 in coded values) so essentially double the size of the coefficient to get the 
same change in the response.  JMP on the other hand (except JMP 10.0.0), because they 
focus power on the coefficients, do not double the coefficient.  We recommend that when 
quadratic terms are of interest that users divide the Design Expert SNR by two. 

B. Summary of Results 
While, the models and mathematics behind statistical power calculations are always 

the same, different software packages have implemented the default assumptions 
differently.  JMP 11 provides the most flexibility and the ability to reproduce power 
calculations from DX and other versions of JMP.  However, the defaults values for the 
coefficients for JMP 11 can lead to very misleading power calculations especially for 
multi-level categorical variables if the user is not aware of the implicit assumptions.  
Design Expert provides a consistent methodology for calculating power.  However, the 
power for quadratic terms may be overly optimistic.  However, both of these packages 
provide defensible and useful power estimates when the underlying assumptions are 
clearly understood. 

 

4-1 



C. Power Analysis Software Recommendations 
Below we provide general recommendations for inputs to the software packages. 

These general recommendations should only be considered when no other information is 
available to help inform these assumptions.  While they are based on previous 
experiences employing DOE in operational tests, they should be modified for the specific 
of each individual test/system.  They are by no means a substitute for engaging subject 
matter experts to determine the detectable difference and using past test data to inform 
the estimation of the noise.  

1. General Recommendations for Risk Specification 
The first decision that one must make in a power analysis is the acceptable level of 

α risk.  Typical values used in test and evaluation range from 0.01 to 0.20.  In the lack of 
any other information in selecting the risk of falsely detecting a factor as significant users 
should use 𝛼𝛼 = 0.05.  It is important to note that selecting an α level for determining 
factor significance of 0.05 does not imply that all model predictions have to be made at a 
95 percent confidence level.  In fact, it is reasonable to select significant model factors 
using an α cutoff of 0.05 and then making prediction statements at a different level of 
confidence.  Previous experience across a variety of programs has shown that using a 
0.20 α cutoff for testing for significant model factors can result in an over 
characterization (fitting a more complex model than necessary and declaring insignificant 
factors significant) of system performance.  

2. General Recommendations for Signal-to-Noise Ratio Estimation 
The estimation of the signal-to-noise ratio is the most important aspect of power 

calculations.  Ideally, the signal (or detectable difference in the response) should be based 
on the operational impact of changes in performance.  The noise should be estimated 
based on previous test data under similar test conditions.  However, it is sometimes 
infeasible to obtain defensible estimates of both the detectable difference and noise.  In 
these cases it is reasonable to consider default values for the signal-to-noise ratios.  
Figure 4-1 shows the trade space in the power analyses for multiple test sizes and values 
of the signal-to-noise ratio.  
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Figure 4-1 Power analysis sensitivity for a single factor with 2 levels 

Figure 4-1 captures the trade space between the SNR and the test size that applies to 
all test designs.  Power analysis is most useful for signal-to-noise ratios between 0.5 and 
2.0.  For continuous response variables, signal-to-noise ratios below 0.5 require 
extremely large test sizes to detect, and tend not to result in operationally or practically 
meaningful differences.  On the other end, signal-to-noise ratios larger than two tend to 
be very obvious and visible in even extremely small tests.  If we also consider the 
diminishing return in statistical power as sample size increases a “sweet spot” emerges 
for conducting power calculations.   

In the lack of any information about what detectable difference and noise estimates 
to use in planning tests, test teams should use values between 1.5 and 2.0 at a significance 
level of 0.05.  These generic ratios are in terms of the response outcomes so if software 
employs tests on coefficients the signal-to-noise ratios should be adjusted accordingly 
(see the next general recommendation). These inputs will provide reasonable test sizes 
for operational tests, and have been successful in previous operational tests.  There is still 
a large difference in the power results for a signal-to-noise ratio of 1.5 and 2.0.  Tests that 
employ a high level of control over the operational environment and therefore expect 
lower unexplained variability should lean towards 2.0.  Highly operationally realistic 
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tests, where sources of unexplained variability are expected to be high should lean 
towards 1.5 or even smaller.  These general recommendations only apply to continuous 
metrics; binary metric approaches are discussed in more detail in Chapter 2.  If a 
significance level of 0.20 is selected instead of the recommended 0.05, then users should 
also adjust the SNR accordingly.  In these cases, the reasonable SNR drops to between 
1.0 and 1.5, with the same considerations.  In terms of power, one should ideally aim for 
above 90 percent, and 95 percent is equivalent to a β risk of 0.05 to match the α risk 
recommendation.  In every case, it is important to balance the risks associated with power 
and confidence.  In some cases higher power may be appropriate when it is related to the 
key reasons for conducting the test. 

3. General Recommendations for Software Inputs 
Table 4-1 below summarizes the general recommendation for entering the signal-to-

noise ratio for different types of factors for each of the software packages provided in this 
guide.  In Table 4-1, and throughout this guide, δ refers to the change expected in the 
response variable as a function of changing the factor, σ refers to the model corrected 
estimate of the standard deviation (which in a classical Regression/ANOVA context is 
the root mean square error). 

Table 4-1. Recommended Inputs for Signal-to-Noise Ratio in Software Packages 

Software 2 Level Factors/ 
Continuous Factors/ 

Interactions for 2 Level 
Factors 

Multiple Level 
Categorical Factors 

and their Interactions 

Quadratic Terms 

Design Expert 
8, 9 𝛿𝛿 𝜎𝜎� * 𝛿𝛿 𝜎𝜎�  𝛿𝛿

2𝜎𝜎�  

JMP 9 𝛿𝛿
2𝜎𝜎�  𝛿𝛿

2𝜎𝜎� ** 𝛿𝛿
2𝜎𝜎�  

JMP 10 
𝛿𝛿 𝜎𝜎�  𝛿𝛿 𝜎𝜎�  𝛿𝛿 𝜎𝜎�  

JMP 11 

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  
Adjust all but two 

coefficients to zero 
(conservative method 

described in Chapter 3) 

Under advanced options 
use “apply delta for 

power” of 𝛿𝛿 𝜎𝜎�  

*If using the generic signal-to-noise ratios suggested in the previous section this value would be between 1.5 
and 2.0. 

**Dividing the signal-to-noise ratio by 2 only provides an exact power calculation to match the other 
packages for two-level factors.  JMP 9 only provides power calculations for coefficients and is not 
comparable to the other packages.  However, using this value typically provides reasonable test sizes, 
despite the limitations in the power calculations. 
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D. Overall Recommendations 
This guide provides a plethora of recommendations on the calculation of statistical 

power and its implementation in statistical software.  The most important of these 
suggestions are: 

• Understand the interpretation of statistical power and that test designs with more 
than one factor should involve multiple estimates of statistical power. 

• Understand how software calculates power. 
• Use continuous response variables whenever possible, when continuous 

response variables are not available use the SNR approximations discussed in 
Chapter 2. 

• In the lack of good estimates of SNR use values between 1.5 and 1.5.  Divide 
these values by two for JMP 9.0 and for quadratic effects for Design Expert. 

• Use a default α risk of 0.05.  Remember that you can always change the 
confidence level for reporting results. 

• Aim for power of 90 percent or higher. 
But above all else, use all of the information available including advice from subject 

matter experts, previous test data, operational relevance, etc. to make these decisions and 
discard the recommendations above when they are not consistent with the goal of the test 
at hand! 
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Appendix A 
Acronyms and Glossary 

k  number of factors 
q  number of factor levels 
c value of an anticipated coefficient 
df  degrees of freedom 
p  number of model parameters 
N  total number of design runs, or total sample size 
λ  reference distribution non-centrality parameter 
SNR signal-to-noise ratio, and equivalent to δ/σ for this guide 
Model parameter  also called a regression coefficient indicates the change in a 

response when a factor variable changes from 0 to 1 
Anticipated coefficient  values set as model parameter estimates to compute power 
Effect  average change in the response due to changing factor levels 
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Appendix B 
Binary Response Power 

It is often beneficial to collect both continuous responses and binary response 
variables.  In these situations analysts should make the clear distinction between the 
continuous and binary responses so that calculations can be conducted using different 
methods for the continuous responses versus the binary responses. 

Design Expert and JMP both currently assume responses are continuous in 
power computations (although Design Expert v9.1 is expected to allow the user the 
capability of performing binary response power analysis using the methods described in 
this appendix).  Design Expert currently support through documentation and help files the 
use of the Bisgaard-Fuller (1997) method for binary response power described below, 
and JMP plans to address this problem in a future version. 

There are many other response types between binary and continuous.  However, 
binary and continuous tend to be the most common in test and evaluation. Other types of 
responses include multi-level (>2) categorical (multinomial), ordinal, and integer.  Power 
calculations for multi-level, ordinal, and integer responses are beyond the scope of this 
guide.  However, they can be done using Monte Carlo simulation modified to the 
appropriate distributions described in the next section, or using a signal to noise 
approximation as described in section 2.C of the guide, again appropriately modified. 

A. Monte Carlo Methods for Calculating Binary Statistical Power 
Monte Carlo simulation can be used to calculate power for a binary response.  

Monte Carlo simulations are a set of computational algorithms in which data are 
generated from a population with given parameter values.  They have been widely used 
in computer simulations of physical systems.  However, they also provide a general 
approach for statistical power calculations.  Muthen and Muthen (2002) provide a good 
tutorial for calculating power via a Monte Carlo simulation. 

The general steps in using a Monte Carlo simulation to calculate binary response 
power for a designed experiment are: 

1. Select a candidate test design. 
2. Generate a sample of test data for the proposed design. 

a. Data generation involves specifying the proportion of expected successful 
outcomes for each condition of the test and generating a potential outcome 
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using the binomial distribution.  The proportion can be specified either 
through setting selecting a statistical model and the corresponding model 
coefficients or through directly assigning and outcome probability to the 
specific set of conditions.  It is important that the data generation reflect the 
detectable difference of interest. 

3. Perform the analysis of the simulated test data (typically a logistic regression). 
4. Determine if each of the factors in the test design (or higher order model 

terms) are significant. 
5. Repeat steps 2 through 4 several times (typically 10,000 is a good number). 

Note the data generated will change, because of the use of the binomial 
distribution. 

6. Calculate power for each factor in the test.  Power for each factor or model 
term is simply the number of times the factor/model term was significant 
divided by the number of simulations (e.g., 10,000).  Recall, we know it is a 
correct rejection because we generated data under the detectable differences of 
interest. 

7. Bonus Step: It is always good to verify that the size of the test (α error) is 
reasonably close to the predetermined specified level.  This is especially 
important in cases where the proposed sample size is small and the assumed 
distribution is the binomial.  To do this, repeat steps 2 through 4, except this 
time generate data with a common proportion of success across all conditions.  
The α error (Type I) will be the total number of times the null hypothesis was 
incorrectly rejected divided by the total number of simulation iterations (e.g., 
10,000). 

Monte Carlo simulations can be difficult to implement the first time.  JMP has 
provided a JMP script that can be used in JMP software to conduct the Monte Carlo 
simulation.  The JMP script is provided in Appendix D. 

B. Bisgaard-Fuller Arcsin Square Root Method – For Two-Level 
Designs 
The first method for binary response power is based on an approach outlined in 

Bisgaard and Fuller (1995). The approach deals with the binomial data by using a 
variance stabilizing transformation on the response, the observed proportion of 
success(𝑝̂𝑝).  The purpose of a variance stabilizing transformation is to satisfy the 
statistical model assumption that the model errors have constant variance across the range 
of predicted values. The transformation uses the arcsine square root transformation. This 
new transformed response would be the response used in the analysis. 

*
1ˆ ˆarcsinp p=  

This transformation provides a way of estimating the number of replicates needed 
for a 2𝑘𝑘−𝑓𝑓 factorial design.  The authors’ formulation of the signal of interest (the change 
in the response we wish to detect) on the transformed scale is: 
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arcsin arcsin
2 2

p pδ
   ∆ ∆

= + − −      
   

 

where 𝑝̅𝑝 is the expected proportion across the design space, and ∆ is the signal (as a 
proportion) to be detected.  The individual point number of replicates (n) per test 
condition is then calculated by the following formula: 

2
1 /2 1

2

( )z z
n

N
α β

δ
− −+

=  

where 𝑧𝑧1−𝛼𝛼/2 and 𝑧𝑧1−𝛽𝛽 are the critical values of the normal distribution based on the 
specified power and confidence, 𝑁𝑁 is the total number of unique test conditions (2𝑘𝑘−𝑓𝑓) 
and 𝛿𝛿 is defined in equation (2).  Bisgaard and Fuller (1995) provide several tables of test 
sizes for reference. 

C. Signal to Noise Approximation Methods – Any Design 
Signal to noise approximation methods are extremely useful for approximating 

power using standard software packages.  The following three approaches provide similar 
outcomes and can be applied to any design type, especially designs with multi-level 
categorical factors.  To use the approximation methods, one first generates an estimate of 
the binary response 𝛿𝛿 𝜎𝜎⁄ , and then inserts that 𝛿𝛿 𝜎𝜎⁄  into standard statistical software to 
calculate power.  Ortiz (2014) describes and compares the various approaches from the 
literature.  He has also developed an interactive Excel spreadsheet, which calculates 
either the power/sample size, or an equivalent 𝛿𝛿 𝜎𝜎⁄  ratio which can be input directly into 
either Design Expert or JMP during design construction and assessment. 

1. Arcsine Formulation 
The first approximation of the signal to noise ratio introduced in Ortiz (2014) is the 

arcsine method.  The arcsine formulation, where δ (in the transformed scale) is the same 
as in shown above, and repeated here for convenience: 

1 arcsin arcsin
2 2

p pδ
   ∆ ∆

= + − −      
   

 

and the standard deviation for the arcsine transformation is:  

1
1 1

24n
σ = =  
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where the number of replicates (or tests involving 0/1 outcomes per test condition), 𝑛𝑛 = 1 
since we wish to determine the ratio prior to replication.  In the case of power for the 
binomial response, the ratio is first determined, then replication is used to achieve the 
desired power. 

2. Logit Transformation Formulation 
This second approximation of the signal to noise ratio uses the logit transformation, 

which stems from the traditional solution used when applying logistic regression to fit a 
model where the dependent variable is a proportion.  The transformation takes the log of 
the odds 

*
2

ˆˆ ln
ˆ1

pp
p

 
=  − 

 

where 𝑝𝑝 is the (binomial) proportion of successes,  1 − 𝑝𝑝 is the proportion of non-
successes, 𝑝𝑝

1−𝑝𝑝
 is the odds of the event.  δ in the transformed scale is defined below. 

1 2
2

1 2

ln ln
1 1

p p
p p

δ
   

= −   − −   
 

 where 1 2
p p ∆

= +  and 2 2
p p ∆

= − .  The standard deviation is defined as follows,  

2 (1 ) (1 )np p p pσ = − = −  

where 𝑛𝑛 = 1 again, since we wish to determine the ratio prior to replication. 

It is important to note for this method that the SNR is computed as SNR = δ 2* σ 2, 
which stems from knowing that the information matrix for logistic regression is.  

′X WX  

where X  is the design matrix, and the W  is made up of the pi(1-pi) – the variance of the 
observations.  We assume that there is some p that is close enough that  

 ( ) ( )′X X p 1- p   

is a ‘reasonable’ approximation to  ′X WX .  The variance of the model parameters is then 

approximated by ( ) ( )1−′X X p 1− p .  Since ( )p 1- p  is in the denominator of the variance 

it becomes part of the numerator of the SNR.  
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3. Normal Approximation Formulation 
The final approximation of the signal to noise ratio is based on the Normal 

approximation of the binomial.  This is the simplest of the formulations presented in this 
paper. In this case δ  is defined as: 

3 1 2p pδ = −  

where 1 2
p p ∆

= +  and 2 2
p p ∆

= − .  The standard deviation is defined 

3 (1 ) (1 )np p p pσ = − = −  

where 𝑛𝑛 = 1 here since we wish to determine the ratio before replication. 

4. General Recommendations for Binary Response Power Calculations 
The signal to noise approximation provides an easy to implement solution for 

approximating power for binary responses to designed experiments.  This is typically 
adequate for providing approximate power calculations.  Table 2-1 shows the results 
from an example design used to compare the three formulations when varying 𝑝𝑝.   The 
power estimates, as seen by the signal to noise ratios, are quite similar across methods for 
a fixed 𝑝𝑝.  Note that the normal approximation method consistently produces the most 
conservative estimate of the signal to noise ratio.  On the other hand, the assumed value 
of 𝑝𝑝 can result in very different approximate signal to noise ratios. As Table 2-1 shows in 
most cases signal to noise ratios between 0.2 and 0.4 are useful for planning tests for 
binary responses.  Table 2-1 only shows signal to noise ratios for proportions greater than 
50 percent because proportions less than 50 percent have symmetric signal to noise ratios. 
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Table B-1.  Comparison of Approximate Signal to Noise (SNR) Ratios  

p ∆ SNR (arcsin) SNR (logit) SNR (normal) 

0.9 0.10 0.34 0.36 0.33 

0.85 0.10 0.28 0.29 0.28 

0.8 0.10 0.25 0.25 0.25 

0.75 0.10 0.23 0.23 0.23 

0.7 0.10 0.22 0.22 0.22 

0.65 0.10 0.21 0.21 0.21 

0.6 0.10 0.20 0.20 0.20 

0.55 0.10 0.20 0.20 0.20 

0.5 0.10 0.20 0.20 0.20 

0.9 0.20 0.93 N/A 0.67 

0.85 0.20 0.60 0.66 0.56 

0.8 0.20 0.52 0.54 0.50 

0.75 0.20 0.47 0.48 0.46 

0.7 0.20 0.44 0.45 0.44 

0.65 0.20 0.42 0.43 0.42 

0.6 0.20 0.41 0.42 0.41 

0.55 0.20 0.40 0.41 0.40 

0.50 0.20 0.40 0.41 0.40 

The Bisgaard-Fuller method for two-level designs, and the three signal-to-noise 
formulations for any design, can easily be implemented in a spreadsheet program.  Ortiz 
(2014) has developed spreadsheet and user guides in addition to the technical report to 
implement all of these calculations. 
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Appendix C 
JMP 11 Power Calculation Details 

This appendix shows how JMP 11 calculates effect, and parameter power, and also 
shows how to calculate most conservative power to reproduce Design Expert’s and JMP 
10’s calculations in JMP 11.  

A. Effect Power 
Realizing that more than one parameter is required for multi-level categorical 

factors, JMP provides power estimates for the multiple individual parameters for a factor 
or interaction, as well as the combined contribution of all the factor or interaction 
parameters, called effect power. The effect power calculations shown below assume a 
linear model of the form 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺, where  𝑿𝑿 is the design matrix of size 𝑁𝑁 𝑥𝑥 𝑝𝑝, 𝑁𝑁 is 
the number of runs, 𝑝𝑝 is the number of parameters in the model, 𝒚𝒚 is the response vector 
of size 𝑁𝑁 𝑥𝑥 1, 𝒃𝒃 is the coefficient vector of size 𝑝𝑝 𝑥𝑥 1, and 𝜺𝜺 is an error term that is 
uncorrelated and normally distributed with a mean of zero and variance 𝜎𝜎2. For this 
tutorial, all factors in the model are assumed to be categorical. The coefficient vector (𝒃𝒃) 
contains one or more coefficients for each factor or interaction effect. For a model with 𝑘𝑘 
effects, the coefficient vector can be written in terms of subsets of coefficients, i.e.  
𝒃𝒃 = [1 𝒃𝒃1 𝒃𝒃2 ⋯ 𝒃𝒃𝑘𝑘], where the 𝑖𝑖th subset of coefficients (𝑖𝑖 = 1,2,3, … ,𝑘𝑘) 
corresponds to the 𝑖𝑖th factor or interaction effect in the model. In other words, 𝒃𝒃𝑖𝑖 is the 
subset of 𝒃𝒃 that belongs to the 𝑖𝑖th effect in the model. For factor or interaction effect 
power, JMP 11 tests the hypothesis 𝒃𝒃𝑖𝑖 = 𝟎𝟎 versus the alternative 𝒃𝒃𝑖𝑖 ≠ 𝟎𝟎 for each effect 
in the model. Power for the 𝑖𝑖th effect (𝑃𝑃𝑖𝑖) is calculated as 

 

𝑃𝑃𝑖𝑖 = 1 − 𝐹𝐹�� 𝐹́𝐹𝑖𝑖,𝑔𝑔𝑖𝑖 ,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆𝑖𝑖� 

 

where 𝐹𝐹� is the non-central cumulative F distribution, 𝐹𝐹−1 is the inverse F central 
cumulative distribution, and the critical F value for the 𝑖𝑖th effect is calculated as 𝐹́𝐹𝑖𝑖 =
𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔𝑖𝑖,𝑛𝑛 − 𝑝𝑝}. 𝑔𝑔𝑖𝑖 is equal to one less than the number of levels (q – 1) in the 
factor corresponding to the 𝑖𝑖th effect, and 𝛿𝛿𝑖𝑖 is the non-centrality parameter that is 
calculated for the 𝑖𝑖th effect and is equal to  
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𝛿𝛿𝑖𝑖 = (𝑳𝑳𝑖𝑖𝒃𝒃)𝑇𝑇(𝑳𝑳𝑖𝑖(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳𝑖𝑖𝑇𝑇)−1𝑳𝑳𝑖𝑖𝒃𝒃 

 

In the calculation for 𝜆𝜆𝑖𝑖, 𝑳𝑳𝑖𝑖 (sometimes called the “hypothesis matrix”) is used to 
isolate the subset of coefficients that are under test and is of size 𝑔𝑔𝑖𝑖  𝑥𝑥 𝑝𝑝. 𝑳𝑳𝑖𝑖 takes the form 
𝑳𝑳𝑖𝑖 = [𝑨𝑨 𝑩𝑩 𝑪𝑪], where 𝑨𝑨 is a matrix of zeroes of size 𝑔𝑔𝑖𝑖 𝑥𝑥 𝐸𝐸, where 𝐸𝐸 is the number of 
parameters in the model preceding the 𝑖𝑖th effect (including the intercept). 𝑩𝑩 is the 
identity matrix of size 𝑔𝑔𝑖𝑖 𝑥𝑥 𝑔𝑔𝑖𝑖. 𝑪𝑪 is a matrix of zeroes of size 𝑔𝑔𝑖𝑖 𝑥𝑥 𝐹𝐹, where 𝐹𝐹 is the 
number of parameters in the model following the 𝑖𝑖th effect. 

 

Example: 

Consider a full-factorial design with a 3-level categorical factor and a 4-level 
categorical factor, with one replicate and N = 12 that supports a main effects model. For 
this example, by default JMP 11 assumes  

 

𝒃𝒃 = [1 1 −1 1 −1 1]𝑇𝑇 = [1 𝒃𝒃1 𝒃𝒃2]𝑇𝑇 . 

 

Then,  

 

𝑳𝑳1 = �0 1 0 0 0 0
0 0 1 0 0 0�   ,  

 

𝑳𝑳2 = �
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�   , 
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𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 −1 −1 −1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 −1 −1 −1
1 −1 −1 1 0 0
1 −1 −1 0 1 0
1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    ,       

 

𝜆𝜆1 = (𝑳𝑳1𝒃𝒃)𝑇𝑇(𝑳𝑳1(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳1𝑇𝑇)−1𝑳𝑳1𝒃𝒃 = 8.0   ,  and 

 

𝜆𝜆2 = (𝑳𝑳2𝒃𝒃)𝑇𝑇(𝑳𝑳2(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳2𝑇𝑇)−1𝑳𝑳2𝒃𝒃 = 12.0   . 

 

Proceeding with the calculation,  

 

𝐹́𝐹1 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,2,12 − 6} = 5.14   , and 

 

𝐹́𝐹2 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,3,12 − 6} = 4.76  . 

 

Power is calculated as 

 

𝑃𝑃1 = 1 − 𝐹𝐹�� 𝐹́𝐹1,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆1� = 1 − 𝐹𝐹�{ 5.14, 2, 12 − 6, 8.0} = 0.49  ,  and 

 

𝑃𝑃2 = 1 − 𝐹𝐹�� 𝐹́𝐹2,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆2� = 1 − 𝐹𝐹�{ 4.76, 3, 12 − 6, 12.0} = 0.54. 

1. Semi-Conservative Power (JMP 10.0.2) 
Semi-conservative power is calculated similarly to effect power and provides power 

estimates that are very close to the values provided by JMP 10.0.2.  Borrowing from the 
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previous example, here is an illustration of how to calculate semi-conservative power in 
JMP 11.  

Consider a full-factorial design with a 3-level categorical factor and a 4-level 
categorical factor that supports a main effects model. For this example, the default 
anticipated coefficients supplied by JMP 11 are  

 

𝒃𝒃 = [1 1 −1 1 −1 1]𝑇𝑇  = [1 𝒃𝒃1 𝒃𝒃2]𝑇𝑇   , where 

 

𝒃𝒃1 = [1 −1]𝑇𝑇  and  𝒃𝒃2 = [1 −1 1]𝑇𝑇 .  

 

For semi-conservative power, we change the anticipated coefficients to 

 

𝒃𝒃1 = [𝑆𝑆𝑆𝑆𝑆𝑆/𝑞𝑞1 𝑆𝑆𝑆𝑆𝑆𝑆/𝑞𝑞1]𝑇𝑇  and  𝒃𝒃2 = [𝑆𝑆𝑆𝑆𝑆𝑆/𝑞𝑞2 𝑆𝑆𝑆𝑆𝑆𝑆/𝑞𝑞2 𝑆𝑆𝑆𝑆𝑆𝑆/𝑞𝑞2]𝑇𝑇   , 

 

where SNR is the signal to noise ratio, 𝑞𝑞1 is the number of levels in the first factor, 
and 𝑞𝑞2 is the number of levels in the second factor. SNR in this calculation is the SNR 
inputted into JMP 10.0.2. In this example we’ll assume the signal to noise is equal to one, 
so SNR = 1.0. We then have 

 

𝒃𝒃1 = [0.33 0.33]𝑇𝑇  and  𝒃𝒃2 = [0.25 0.25 0.25]𝑇𝑇 . 

 

Then,  

 

𝑳𝑳1 = �0 1 0 0 0 0
0 0 1 0 0 0�   ,  

 

𝑳𝑳2 = �
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�   , 
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𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 −1 −1 −1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 −1 −1 −1
1 −1 −1 1 0 0
1 −1 −1 0 1 0
1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    ,       

 

𝜆𝜆1 = (𝑳𝑳1𝒃𝒃)𝑇𝑇(𝑳𝑳1(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳1𝑇𝑇)−1𝑳𝑳1𝒃𝒃 = 2.67   ,  and 

 

𝜆𝜆2 = (𝑳𝑳2𝒃𝒃)𝑇𝑇(𝑳𝑳2(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳2𝑇𝑇)−1𝑳𝑳2𝒃𝒃 = 2.25   . 

 

 

Proceeding with the calculation,  

 

𝐹́𝐹1 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,2,12 − 6} = 5.14   , and 

 

𝐹́𝐹2 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,3,12 − 6} = 4.76  . 

 

Power is calculated as 

 

𝑃𝑃1 = 1 − 𝐹𝐹�� 𝐹́𝐹1,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆1� = 1 − 𝐹𝐹�{ 5.14, 2, 12 − 6, 2.67} = 0.19 ,  and 

 

𝑃𝑃2 = 1 − 𝐹𝐹�� 𝐹́𝐹2,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆2� = 1 − 𝐹𝐹�{ 4.76, 3, 12 − 6, 2.25} = 0.13. 

2. Conservative Power (Design Expert and JMP 10.0.0) 
Conservative power is calculated similarly to effect power and provides power 

estimates that are very close to the values provided by Design Expert and JMP 10.0.0.  
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Borrowing from the previous example, here is an illustration of how to calculate 
conservative power in JMP 11.  

Consider a full-factorial design with a 3-level categorical factor and a 4-level 
categorical factor that supports a main effects model. For this example, the default 
anticipated coefficients are  

 

𝒃𝒃 = [1 1 −1 1 −1 1]𝑇𝑇  = [1 𝒃𝒃1 𝒃𝒃2]𝑇𝑇   , where 

 

𝒃𝒃1 = [1 −1]𝑇𝑇  and  𝒃𝒃2 = [1 −1 1]𝑇𝑇 .  

 

For conservative power, we change the anticipated coefficients to 

 

𝒃𝒃1 = [0 𝑆𝑆𝑆𝑆𝑆𝑆/2]𝑇𝑇  and  𝒃𝒃2 = [0 0 𝑆𝑆𝑆𝑆𝑆𝑆/2]𝑇𝑇   , 

 

where SNR is the signal to noise ratio as defined by Design Expert of JMP 10. The 
nonzero coefficients of magnitude SNR/2 are selected as those with the lowest parameter 
power when JMP 11 default anticipated coefficients are targeted.  Most analysts who use 
this conservative power calculation will be doing so to replicate the power provided in 
Design Expert and JMP 10.0.0. SNR in this calculation is the SNR inputted into Design 
Expert or JMP 10.0.0. In this example we’ll assume that we’d like to reproduce the power 
estimates provided by Design Expert or JMP 10.0.0 where the signal to noise ratio in 
those packages is equal to one, so SNR = 1.0. We then have 

 

𝒃𝒃1 = [0 0.5]𝑇𝑇  and  𝒃𝒃2 = [0 0 0.5]𝑇𝑇 . 

 

Then,  

 

𝑳𝑳1 = �0 1 0 0 0 0
0 0 1 0 0 0�   ,  
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𝑳𝑳2 = �
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�   , 

 

𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 −1 −1 −1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 −1 −1 −1
1 −1 −1 1 0 0
1 −1 −1 0 1 0
1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    ,       

 

𝜆𝜆1 = (𝑳𝑳1𝒃𝒃)𝑇𝑇(𝑳𝑳1(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳1𝑇𝑇)−1𝑳𝑳1𝒃𝒃 = 2.0   ,  and 

 

𝜆𝜆2 = (𝑳𝑳2𝒃𝒃)𝑇𝑇(𝑳𝑳2(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑳𝑳2𝑇𝑇)−1𝑳𝑳2𝒃𝒃 = 1.5   . 

 

 

Proceeding with the calculation,  

 

𝐹́𝐹1 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,2,12 − 6} = 5.14   , and 

 

𝐹́𝐹2 = 𝐹𝐹−1{1 − 𝛼𝛼,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,3,12 − 6} = 4.76  . 

 

Power is calculated as 

 

𝑃𝑃1 = 1 − 𝐹𝐹�� 𝐹́𝐹1,𝑔𝑔1,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆1� = 1 − 𝐹𝐹�{ 5.14, 2, 12 − 6, 2.0} = 0.15 ,  and 

 

𝑃𝑃2 = 1 − 𝐹𝐹�� 𝐹́𝐹2,𝑔𝑔2,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆2� = 1 − 𝐹𝐹�{ 4.76, 3, 12 − 6, 1.5} = 0.10. 
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3. Parameter Power 
The parameter power calculations below assume a  linear model of the form 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺, where  𝑿𝑿 is the design matrix of size 𝑁𝑁 𝑥𝑥 𝑝𝑝, 𝑛𝑛 is the number of runs, 𝑝𝑝 is the 
number of parameters in the model, 𝒚𝒚 is the response vector of size 𝑁𝑁 𝑥𝑥 1, 𝒃𝒃 is the 
coefficient vector of size 𝑝𝑝 𝑥𝑥 1, and 𝜺𝜺 is an error term that is uncorrelated and normally 
distributed with a mean of zero and variance 𝝈𝝈𝟐𝟐 .Recalling from before, effect power 
deals with hypotheses on all the coefficients within an effect, i.e. the null hypothesis 
𝒃𝒃𝑖𝑖 = 𝟎𝟎 versus the alternative 𝒃𝒃𝑖𝑖 ≠ 𝟎𝟎. Parameter power takes a slightly different approach 
by testing the hypothesis 𝑏𝑏𝑗𝑗 = 0 versus the alternative 𝑏𝑏𝑗𝑗 ≠ 0 for the 𝑗𝑗th parameter within 
model. Effect power tests a set of coefficients, whereas parameter power test a single 
parameter at a time. Power for the 𝑗𝑗P

th parameter is calculated as 

 

𝑃𝑃𝑗𝑗 = 1 − 𝐹𝐹�� 𝐹́𝐹, 1, 𝑛𝑛 − 𝑝𝑝, 𝜆𝜆𝑗𝑗�    , 

 

where the critical F value is calculated as 𝐹́𝐹 = 𝐹𝐹−1{1 − 𝛼𝛼, 1,𝑛𝑛 − 𝑝𝑝}. The non-centrality 
parameter is then 

 

𝜆𝜆𝑗𝑗 = �𝑸𝑸𝑗𝑗𝒃𝒃�
𝑇𝑇
�𝑸𝑸𝑗𝑗(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑸𝑸𝑗𝑗

𝑇𝑇�
−1
𝑸𝑸𝑗𝑗𝒃𝒃     , 

 

where 𝑸𝑸𝑗𝑗 is a one-dimensional row vector of length equal to the column vector 𝒃𝒃 and 
contains all zeroes except for the 𝑗𝑗th parameter, which is set equal to one. 

 

Example: 

 

Consider, again, a full-factorial design with a 3-level categorical factor and a 4-level 
categorical factor that supports a main effects model.  The design matrix is 
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𝑋𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 −1 −1 −1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 −1 −1 −1
1 −1 −1 1 0 0
1 −1 −1 0 1 0
1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

       , 

 

and for this example, by default, JMP 11 provides  

 

𝒃𝒃 = [1 1 −1 1 −1 1]𝑇𝑇   . 

 

The first column of the design matrix corresponds to the intercept. The second and 
third columns correspond to the three-level factor, while the last three columns 
correspond to the four-level factor. To calculate power for the third parameter in the 
model (which belongs to the second level of the three-level categorical factor), we have  

 

𝑸𝑸3 = [0 0 1 0 0 0]. 

 

 

𝛿𝛿3 = (𝑸𝑸3𝒃𝒃)𝑇𝑇(𝑸𝑸3(𝑿𝑿𝑇𝑇𝑿𝑿 )−1𝑸𝑸3
𝑇𝑇)−1𝑸𝑸3𝒃𝒃 = 6.0. 

 

 

Proceeding with the calculation, 

  

𝐹́𝐹 = 𝐹𝐹−1{1 − 𝛼𝛼, 1,𝑁𝑁 − 𝑝𝑝} = 𝐹𝐹−1{1 − .05,1,12 − 6} = 5.99   . 

 

Power is calculated as 
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𝑃𝑃3 = 1 − 𝐹𝐹�� 𝐹́𝐹, 1,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆3� = 1 − 𝐹𝐹�{ 5.99, 1, 12 − 6, 6.0} = 0.54 . 
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Appendix D 
Design Expert Power Calculation Details 

The Design Expert power calculations below assume a  linear model of the form 
𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺, where  𝑿𝑿 is the design matrix of size 𝑁𝑁 𝑥𝑥 𝑝𝑝, 𝑛𝑛 is the number of runs, 𝑝𝑝 is the 
number of parameters in the model, 𝒚𝒚 is the response vector of size 𝑁𝑁 𝑥𝑥 1, 𝒃𝒃 is the 
coefficient vector of size 𝑝𝑝 𝑥𝑥 1, and 𝜺𝜺 is an error term that is uncorrelated and normally 
distributed with a mean of zero and variance 𝜎𝜎2. It is assumed that all factors are 
categorical. 

In practice, we wish to determine the power to observe whether a model term, such 
as a main effect or interaction, is significant. Suppose there are 𝛿𝛿𝑝𝑝 coefficients associated 
with that model term. The coefficients vector can be split into two vectors, one, 𝛿𝛿𝜷𝜷, 
containing the coefficients to be tested and the other, 𝜷𝜷𝟎𝟎, containing the remainder of the 
coefficients. The design matrix can be similarly partitioned into corresponding matrices 
so the model can be written as: 

 𝑦𝑦 = (𝑿𝑿𝟎𝟎 𝛿𝛿𝑿𝑿) �𝜷𝜷𝟎𝟎
𝛿𝛿𝜷𝜷� + 𝜺𝜺 = 𝑿𝑿𝟎𝟎𝜷𝜷𝟎𝟎 + 𝛿𝛿𝑿𝑿𝛿𝛿𝜷𝜷 + 𝜺𝜺.  

 
The model consisting of only 𝑿𝑿𝟎𝟎 and 𝜷𝜷𝟎𝟎 is the null or restricted model. If the term under 
test is insignificant, then 𝛿𝛿𝜷𝜷 =𝟎𝟎. Hence, the null and alternative hypotheses are: 

 
𝐻𝐻0    ∶     𝛿𝛿𝜷𝜷 = 𝟎𝟎
𝐻𝐻1    ∶     𝛿𝛿𝜷𝜷 ≠ 𝟎𝟎.  

 
The test statistic is constructed from the residual sum of squares under the full and 
restricted models and is defined as: 

 
𝑓𝑓 =

𝑁𝑁 − 𝑝𝑝
𝛿𝛿𝛿𝛿

𝒚𝒚𝑇𝑇(𝑯𝑯0 − 𝑯𝑯)𝒚𝒚
𝒚𝒚𝑇𝑇(𝑰𝑰 − 𝑯𝑯)𝒚𝒚

 ,  

 
where 𝑯𝑯 = 𝑿𝑿(𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇 and 𝑯𝑯𝟎𝟎 = 𝑿𝑿𝟎𝟎(𝑿𝑿0

𝑇𝑇𝑿𝑿𝟎𝟎)−1𝑿𝑿0
𝑇𝑇 (these are the hat matrices). The 

test statistic is 𝐹𝐹-distributed under both hypotheses. Specifically, 
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 𝑓𝑓~ �𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝)        ∶    𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝;  𝜆𝜆)   ∶    𝐻𝐻1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
where 𝐹𝐹(𝜈𝜈1, 𝜈𝜈2) is the 𝐹𝐹-distribution with 𝜈𝜈1 numerator degrees of freedom and 𝜈𝜈2 

denominator degrees of freedom. 𝐹𝐹(𝜈𝜈1, 𝜈𝜈2;  𝜆𝜆) is the singly non-central 𝐹𝐹-distribution 
with non-centrality parameter 𝜆𝜆, and 

 𝜆𝜆 = �𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

�
𝑇𝑇

(𝑰𝑰 − 𝑯𝑯0) �𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

�.  

 

Given the distribution of the test statistic under the null and alternative hypotheses, 
power is calculated in the usual way. The null hypothesis would be rejected with 
significance 𝛼𝛼 if 

 𝑓𝑓 > 𝑓𝑓𝑈𝑈 = 𝑃𝑃−1[𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝)](1 − 𝛼𝛼).  

 
where 𝑃𝑃−1[∗] is the inverse cumulative distribution function of ∗. Thus the power of the 
test is: 

 𝒫𝒫 = 𝑃𝑃−1[𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝;  𝜆𝜆)](𝑓𝑓𝑈𝑈).  

 

Model terms for continuous factors are associated with a single coefficient. Hence, 
𝛿𝛿𝑝𝑝=1 and 𝛿𝛿𝜷𝜷 is a one-dimensional vector: 𝛿𝛿𝜷𝜷 =(𝛿𝛿𝛽𝛽) and 𝛿𝛿𝑿𝑿 is an 𝑁𝑁×1 matrix. The unit 
change induced by 𝛿𝛿𝜷𝜷 is generally defined as the largest observable change in the 
response. If factor levels are scaled to the interval [−1, 1], then the range of a linear term 
of the form 𝛽𝛽𝑥𝑥 is 2𝛽𝛽. The effect size is the same for a two-factor interaction term of the 
form 𝛽𝛽𝑥𝑥𝑦𝑦. For a quadratic term of the form 𝛽𝛽𝑥𝑥2, the size of the effect is only 𝛽𝛽 since 𝑥𝑥2 

varies from 0 to 1 on [−1, 1]. In general, if the model term contains any odd powers, the 
effect size is twice the coefficient; otherwise it is equal to the coefficient. If we seek to 
determine the power to observe an effect of size Δ𝜎𝜎 (Δ is the signal-to-noise ratio), then 
we should set 

 
𝛿𝛿𝛿𝛿 = �

Δ𝜎𝜎
2

   ∶       𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Δ𝜎𝜎    ∶      𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
  

 

Design Expert and JMP 10 follow this philosophy; however, JMP 9 chooses to 
subscribe to another. Instead of sizing the effect based on the change in the response, 
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JMP 9 sizes the effect based on the change in the coefficient. Therefore, 𝛿𝛿𝛽𝛽=Δ𝜎𝜎 
regardless of the type of model term. Table 1 summarizes the effect size for common 
model terms. 

Table D-1. 𝜹𝜹𝜹𝜹 Values Used by JMP and Design Expert 
Package Main Effects Two Factor Interactions 

JMP 9 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎 

JMP 10 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎/2 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎/2 

Design Expert 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎/2 𝛿𝛿𝛿𝛿 = Δ𝜎𝜎/2 

 

Categorical factors complicate the calculation of power since categorical model 
terms are usually described by more than one coefficient. The definition of the effect size 
for a categorical term and the principle for determining 𝛿𝛿𝜷𝜷 used by Design Expert is 
described by Oehlert and Whitcomb (2001) and will be repeated here. 

Suppose we have a model with two categorical factors, 𝐴𝐴 and 𝐵𝐵, that accounts for 
main effects and the interaction. If 𝐴𝐴 has 𝑁𝑁 levels and 𝐵𝐵 has 𝑀𝑀, then a general linear 
model can be written for the predicted response using indicator variables: 
 

 
𝑦𝑦� = 𝜇𝜇 + � 𝐴𝐴𝑖𝑖𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1
+ � 𝐵𝐵𝑖𝑖𝑏𝑏𝑖𝑖

𝑀𝑀

𝑖𝑖=1
+ � � 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗

𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
  .  

 

In this example, the lowercase variables are indicator variables, which are equal to 
one when the treatment is in the associated level and zero otherwise. 𝜇𝜇 represents the 
overall mean. 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖  represent the main effects and 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  represents the interaction. 

The coefficients must sum to zero over any index since each coefficient represents 
the departure from the overall mean at the associated combination of levels. This 
constraint means that an q-level main effect can be sufficiently described by q−1 
coefficients. These sufficient coefficients represent the effect of contrasts between the 
factor levels. Typically, the contrasts are defined so that the 𝑁𝑁−1 contrast coefficients are 
equal to the first q−1 level coefficients. This definition leaves the contrast coefficients 
with a straightforward interpretation. Following this convention, the level coefficients of 
a three-level main effect, 𝑍𝑍, can be described by two contrast coefficients, 𝛽𝛽1

𝑍𝑍 and 𝛽𝛽2
𝑍𝑍, 

through the following relationship: 
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�

𝑍𝑍1
𝑍𝑍2
𝑍𝑍3

� = �
1 0
0 1

−1 −1
� �𝛽𝛽1

𝑍𝑍

𝛽𝛽2
𝑍𝑍�   ,  

 

and in general 

 
�

𝑍𝑍1
⋮

𝑍𝑍𝑞𝑞

� = 𝑪𝑪𝑞𝑞 �
𝛽𝛽1

𝑍𝑍

⋮
𝛽𝛽𝑞𝑞−1

𝑍𝑍
�  .  

 

The columns of 𝑪𝑪𝑞𝑞  must sum to zero to enforce the constraint on the level 
coefficients. The coding system in 𝑪𝑪𝑞𝑞 is often referred to as a simple coding. Other 
coding systems for categorical factors exist such as the forwards difference coding or 
backwards difference coding, but simple coding is most common and is employed by 
default by JMP 9, 10, and Design Expert.  

While the level coefficients are useful for describing the behavior of the model, the 
contrast coefficients are used in the regression. We can rewrite the model using the level 
coefficients: 

 

 
𝑦𝑦� = 𝜇𝜇 + � 𝛽𝛽𝑖𝑖

𝐴𝐴𝑎𝑎�𝑖𝑖

𝑞𝑞−1

𝑖𝑖=1
+ � 𝛽𝛽𝑖𝑖

𝐵𝐵𝑏𝑏�𝑖𝑖

𝑀𝑀−1

𝑖𝑖=1
+ � � 𝛽𝛽𝑖𝑖𝑖𝑖

𝐴𝐴𝐴𝐴𝑎𝑎�𝑖𝑖𝑏𝑏�𝑗𝑗

𝑀𝑀−1

𝑗𝑗=1

𝑞𝑞−1

𝑖𝑖=1
  .  

 

Doing so introduces new indicator variables that are related to the previous indicator 
variables through the contrast matrix. In general, 

 

 
�

𝑍𝑍�1
⋮

𝑍𝑍�𝑞𝑞−1

� = 𝑪𝑪𝑞𝑞
𝑇𝑇 �

𝑍𝑍1
⋮

𝑍𝑍𝑞𝑞

�  .  

 

We introduced the distinction between the level coefficients and the contrast 
coefficients because in Design Expert the effect size is defined in terms of the differences 
between levels, but the regression and power calculation are carried out on the contrast 
coefficients. Design Expert defines the size of the effect, 𝜖𝜖, induced by the main effect of 
a factor to be the largest absolute difference between any two levels, i.e. 
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 𝜖𝜖 = max𝑖𝑖,𝑖𝑖′ 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑖𝑖′  

 

The effect size due to a two-factor interaction is the largest quartet difference 
between interaction terms: 

 

 𝜖𝜖 =
1
2

max𝑖𝑖,𝑖𝑖′ ,𝑗𝑗,𝑗𝑗′ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 − 𝐴𝐴𝐴𝐴𝑖𝑖′𝑗𝑗 − 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖′ + 𝐴𝐴𝐴𝐴𝑖𝑖′𝑗𝑗′  

 

The effect size due to a three-factor interaction is the largest octet difference, and 
the effect size due to higher-order interactions continues the pattern. 

The non-centrality parameter dictates the separation between the distribution of the 
test statistic under the null and alternative hypotheses – the lower the non-centrality 
parameter, the lower the power. Design Expert appeals to the principle of conservatism 
and searches for the 𝛿𝛿𝜷𝜷 that produces the desired effect size as just described and 
minimizes the non-centrality parameter (hence, power). Design Expert searches for the 
𝛿𝛿𝜷𝜷 that minimizes the non-centrality parameter  λ, and If we represent each trial solution 
as the column of a matrix 𝛿𝛿𝜷𝜷, then 

 

 
𝜆𝜆 = min diag ��𝛿𝛿𝑿𝑿

𝛿𝛿𝜷𝜷
𝜎𝜎

�
𝑇𝑇

(𝑰𝑰 − 𝑯𝑯0) �𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

��.  

 

Design Expert Power Calculation Example 

 

Consider a design that has one factor with three levels. The design is fully replicated 
resulting in six total runs. The regression model for this design is a linear model of the 
form 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺, where  𝑿𝑿 is the design matrix of size 𝑛𝑛 𝑥𝑥 𝑝𝑝, 𝑛𝑛 is the number of runs, 𝑝𝑝 
is the number of parameters in the model, 𝒚𝒚 is the response vector of size 𝑛𝑛 𝑥𝑥 1, 𝒃𝒃 is the 
coefficient vector of size 𝑝𝑝 𝑥𝑥 1, and 𝜺𝜺 is an error term that is uncorrelated and normally 
distributed with a mean of zero and variance 𝜎𝜎2. The design matrix is 
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𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0
1 0 1
1 −1 −1
1 1 0
1 0 1
1 −1 −1⎦

⎥
⎥
⎥
⎥
⎤

   . 

 

The first column of 𝑿𝑿 corresponds to the model intercept, while the second and third 
columns correspond to the indicator variable settings. The design matrix is partitioned 
into the null design matrix and the augmentation under the alternative model: 

 

𝑿𝑿0 =

⎣
⎢
⎢
⎢
⎢
⎡
1
1
1
1
1
1⎦

⎥
⎥
⎥
⎥
⎤

     ,   𝛿𝛿𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎡

1 0
0 1

−1 −1
1 0
0 1

−1 −1⎦
⎥
⎥
⎥
⎥
⎤

   . 

 

The hat matrix under the null model is 

 

𝑯𝑯0 = 𝑿𝑿0�𝑿𝑿0
𝑻𝑻𝑿𝑿0�

−1
𝑿𝑿0

𝑻𝑻 =
1
6

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1⎦

⎥
⎥
⎥
⎥
⎤

  , 

 

and  

 

𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

= 𝑆𝑆𝑆𝑆𝑆𝑆

⎣
⎢
⎢
⎢
⎢
⎡

1 0
0 1

−1 −1
1 0
0 1

−1 −1⎦
⎥
⎥
⎥
⎥
⎤

� 0 1/2 1/2
1/2 0 −1/2� =

𝑆𝑆𝑆𝑆𝑆𝑆
2

⎣
⎢
⎢
⎢
⎢
⎡

0 1 1
1 0 −1

−1 −1 0
0 1 1
1 0 −1

−1 −1 0 ⎦
⎥
⎥
⎥
⎥
⎤

   . 
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Then the non-centrality parameter is 

 

𝜆𝜆 = min diag ��𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

�
𝑇𝑇

(𝑰𝑰 − 𝑯𝑯0) �𝛿𝛿𝑿𝑿
𝛿𝛿𝜷𝜷
𝜎𝜎

�� = 𝑆𝑆𝑆𝑆𝑆𝑆2 min diag �
1
2

�
2 1 −1
1 2 1

−1 1 2
��

= 𝑆𝑆𝑆𝑆𝑆𝑆2 . 

The design includes 6 runs (𝑁𝑁 = 6), the model includes three parameters (𝑝𝑝 = 3), 
and two parameters are being tested (𝛿𝛿𝛿𝛿 = 2). Hence, the critical F-value is: 

 

𝑓𝑓𝑈𝑈 = 𝑃𝑃−1[𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝)](1 − 𝛼𝛼) = 𝑃𝑃−1[𝐹𝐹(2,3)](1 − 0.2) = 2.886  , 

 

and power for an effect with a signal-to-noise ratio of 1 is: 

 

𝒫𝒫 = 𝑃𝑃−1[𝐹𝐹(𝛿𝛿𝛿𝛿, 𝑁𝑁 − 𝑝𝑝;  𝜆𝜆)](𝑓𝑓𝑈𝑈) = 𝑃𝑃−1[𝐹𝐹(2,3; 1)](2.886) = 0.294. 
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Appendix E 
JMP Monte Carlo Simulation Script 

dt = Current Data Table(); 
nsim = 100; 
p = J( nsim, 4, 0 ); 
For( sim = 1, sim <= nsim, sim++, 
 Column( 5 ) << Eval Formula; 
 
 glm = Fit Model( 
  Y( :Y ), 
  Effects( :X1, :X2, :X3 ), 
  Personality( Generalized Linear Model ), 
  GLM Distribution( Binomial ), 
  Link Function( Logit ), 
  Overdispersion Tests and Intervals( 0 ), 
  Name( "Firth Bias-adjusted Estimates" )(1), 
  Run 
 ); 
 rpt = Report( glm ); 
 pValues = Report( glm )[Outline Box( "Parameter 
Estimates" )][Number Col Box( 4 ) 
 ] << get as matrix; 
 p[sim, 0] = pValues`; 
 rpt << Close Window; 
); 
 
power=j(1,4,0); 
for (i=1,i<=4,i++, 
 ps = Sort Ascending(p[0,i]); 
 power[1,i] = min(loc(ps>0.05))/nsim; 
); 
as table(power); 
Column(1)<<set name("Intercept Power"); 
Column(2)<<set name("X1 Power"); 
Column(3)<<set name("X2 Power"); 
Column(4)<<set name("X3 Power"); 
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